首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
改进的模块2DPCA人脸识别方法   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于类内自适应加权平均值的模块2DPCA人脸识别方法。该算法对每一类训练样本中每个训练样本的每一子块求类内自适应加权平均值,并用类内自适应加权平均值对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,从而得到最优投影矩阵;由训练集的全体子块的加权平均值对训练样本的子块和测试样本的子块进行规范化后投影到最优投影矩阵,得到识别特征;最后用最近距离分类器分类。在ORL人脸库上的实验结果表明,提出的方法在识别性能上明显优于2DPCA方法和普通模块2DPCA方法。  相似文献   

2.
近年来,人脸识别由于其诱人的应用前景再次成为模式识别领域的研究热点。分析了小波变换、2DPCA以及SVM 3种方法在人脸识别中各自的优势,提出了融合小波和2DPCA进行SVM人脸识别的方法。首先对原始图像采用小波分解提取低频信息,忽略高频分量;然后利用2DPCA进行特征提取;最后把降维后的数据输入SVM进行分类识别。该方法在ORL、Yale人脸库上的实验表明,与传统的方法相比,不但可以提高识别率,而且所用时间明显减少。  相似文献   

3.
采用2DPCA方法提取人脸图像的特征值,通过RBF神经网络进行训练和识别,提出一种基于2DPCA和RBF神经网络的人脸识别方法,并将此方法应用于ORL人脸库。实验结果表明,该方法不仅具有较好的人脸图像识别能力,而且能明显缩短识别算法的运行时间。  相似文献   

4.
主成分分析(Principal Component Analysis,PCA)方法是模式识别技术中经典的特征提取和降维技术之一。在传统的PCA基础上,提出了二维主成分分析(Two-Dimensional Principal Component Analysis,2DPCA)方法。针对二维主成分分析在特征提取和数据降维上存在的缺点,提出一种综合的方法—在小波变换的基础上,对人脸数据库进行二维主成分分析。实验结果表明,该方法不仅实现了降维,而且能取得比传统主成分分析和二维主成分分析更好的识别性能。  相似文献   

5.
一种基于共同向量结合2DPCA的人脸识别方法   总被引:2,自引:2,他引:2  
文颖  施鹏飞 《自动化学报》2009,35(2):202-205
提出了一种基于共同向量结合2维主成分分析(2-dimen-sional principal component analysis, 2DPCA)的人脸识别方法. 共同向量由图像通过Gram-Schmidt正交变换而求得, 具有该类图像共同不变的性质. 原始图像与该类共同向量之间的差分向量通过2DPCA处理, 依据最小距离测试得到识别结果. 实验在ORL和Yale人脸数据库进行测试, 结果表明本文提出的方法有较好的识别性能.  相似文献   

6.
针对(2D)2PCA无法保存某些重要局部特征的问题,提出一种分块双向二维主成分分析融合局部特征方法。首先,将图像分解为互不重叠的子块,每个子块包含重要的局部信息,利用(2D)2PCA对子块进行特征提取并投影到特征子空间。然后,对每个子块分别设计一个分类器并在一定置信度范围内判别测试样本所属类别。最后,根据所有子块所属类别的置信度之和完成人脸分类。在四个人脸识别数据库上的实验结果表明,相比其他几种人脸识别算法,该方法取得了更高的识别精度。  相似文献   

7.
改进的模块2DPCA人脸识别算法   总被引:1,自引:0,他引:1       下载免费PDF全文
张岩  武玉强 《计算机工程》2011,37(7):228-230
提出一种改进的模块2DPCA人脸识别算法,即基于子距离的模块2DPCA人脸识别算法。该算法对图像进行分块,对每一子块独立地利用2DPCA进行处理,求出测试样本子块与训练样本对应子块间的子距离,将所有子距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库上的实验结果表明,该算法在识别性能上优于普通的模块2DPCA算法和修正的模块2DPCA算法。  相似文献   

8.
结合人脸图像的对称性在非迭代双边二维主成分分析(NIB2DPCA)的基础上, 提出了对称非迭代双边二维主成分分析(SNIB2DPCA)的人脸识别方法。该方法引入镜像变换, 根据奇偶分解原理分别生成奇、偶对称样本, 用NIB2DPCA分别对奇偶对称样本提取特征, 通过奇偶加权因子对奇偶对称样本的特征矩阵进行组合得到最终的分类特征矩阵, 最后用最近邻分类器分类。在Yale、ORL和YaleB人脸库上的实验表明该方法不仅显著提高了识别率, 而且对光照影响有一定的鲁棒性。  相似文献   

9.
在小样本情况下,传统的2DPCA算法中采用的训练样本的平均值不一定就是训练样本分布的中心,为了解决这个问题,提出了一种基于样本中间值的2DPCA人脸识别算法(M2DPCA),该算法采用训练样本的中间值代替训练样本的平均值,以此重建总体散布矩阵。在ORL和FERET人脸数据库上的实验结果证明,新方法可以有效改善识别性能,优于传统的PCA和2DPCA方法。  相似文献   

10.
提出一种离散余弦变换和改进的分块二维主元分析相结合的人脸识别方法。该算法利用DCT压缩人脸图像以去掉人眼不敏感的中频分量与高频分量,这样有效降低所需特征的维数,减少计算量。通过IM2DPCA进行特征提取得到人脸识别特征,运用最近邻分类器完成人脸的识别。在基于ORL、YaleB、CAS-PEAL及Feret人脸数据库的实验结果证明该算法的有效性与稳健性。  相似文献   

11.
CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现“小样本”等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VTS人脸库上的实验结果表明,新方法在识别效果上有比以往的算法更为明显的优势。  相似文献   

12.
赵雅英  谭延琪  马小虎 《计算机应用》2011,31(10):2728-2730
针对大多数人脸识别方法在单个训练样本条件下识别性能下降的问题,提出了结合多种样本扩充方法和改进二维主成分分析(2DPCA)的人脸识别算法。通过分析各种样本扩充方法的优缺点,用多种样本扩充方法来生成虚拟样本,以充分利用单一样本所提供的信息。采用改进的2DPCA方法对生成的虚拟样本进行特征提取,对训练样本进行分块,并用类内平均值规范后的分块来构造总体散布矩阵。在ORL和Yale人脸库上的实验表明,所提出的方法在识别性能方面优于普通的2DPCA方法,优于单一的样本扩充方法。  相似文献   

13.
提出一种改进的小波包融合+2DPCA方法,先对图像进行二层小波包分解,再选取最利于判别分类的4幅高频子图进行融合,将融合子图与低频子图分别进行2DPCA降维和特征提取,最后进行决策级融合,得到识别结果。在Yale和JAFFE标准人脸库上的实验结果表明,该改进方法能有效提高识别率。  相似文献   

14.
将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替代原始图像的低维新模式,施行NSA。该法能有效提取图像的局部特征,而由于考虑到类内、类间的差异,可弥补PCA 的缺陷。在ORL人脸库和XM2VTS人脸库上对LDA方法、NSA方法以及该方法分别进行了评价和测试,结果显示,所提方法在识别效果上优于LDA方法和NSA方法。  相似文献   

15.
与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同尺度的特征融合到一起,最后采用2DPCA方法进行特征提取和分类。在ORL人脸数据库上进行仿真实验并与传统的2DPCA、GT+2DPCA等方法做了对比,实验结果表明提出的算法不但取得了更好的识别效果,而且提高了识别速度。  相似文献   

16.
结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到模糊类间散射矩阵和模糊类内散射矩阵。与(2D2PCALDA相比,该算法充分利用了(2D)2PCALDA的优点,有效地提取了行和列的识别信息,并充分考虑了样本的分布信息。在Yale和FERET人脸数据库上的实验结果表明,该方法识别效果优于(2D)2PCALDA、双向二维主成分分析((2D)2PCA)等方法。  相似文献   

17.
提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的局部特征和类别信息,而且完全避免了使用矩阵的奇异值分解。在ORL人脸库上的实验结果验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号