首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
朱巨莲  霍宏  方涛 《计算机工程》2011,37(20):172-174
针对遥感影像数据量大、背景复杂、目标自身信息不足等问题,提出一种基于自顶向下视觉注意的遥感影像目标检测方法。根据目标外观线索优先选择与其特征相符的图像区域,以提高目标检测的效率,依据上下文线索将搜索集中在最可能出现目标的环境区域,以保证目标检测的可靠性。实验结果证明,该方法能提高目标检测的效率和正确率。  相似文献   

2.
提出一种基于视觉注意机制的运动目标跟踪方法。该方法借鉴人类的视觉注意机制的研究成果,建立视觉注意机制的计算模型,计算视频中各部分内容的视觉显著性。结合视觉显著性计算结果,提取视频图像中的显著性目标。利用颜色分布模型作为目标的特征表示模型,与视频中各显著目标进行特征匹配,实现目标的跟踪。在多个视频序列中进行实验,并给出相应的实验结果及分析。实验结果表明,提出的目标检测与跟踪算法是正确有效的。  相似文献   

3.
舰船作为海洋信息感知中的重要目标,其检测在军舰探测、精确制导等军用领域以及海面搜救、渔船监测等民用领域具有极其重要的战略意义.海洋遥感图像受云雾、风浪、海杂波和光照等干扰使得舰船检测具有挑战性.根据可见光遥感图像舰船目标检测特点提出粗检测和细鉴别相结合的技术路线.先基于视觉显著性的谱残差法对图像进行增强以提取目标候选区域,后根据舰船与干扰因素差异采用舰船方向梯度直方图特征对目标候选区域进行鉴别,提取真正的舰船目标.实验结果表明,上述算法舰船检测率高,对光照、海杂波干扰具有一定程度的鲁棒性,且能有效剔除碎云岛屿等干扰物,显著降低虚警率.  相似文献   

4.
视觉选择性注意模型的应用是当今认知信息处理领域的研究热点。根据人类视觉感知理论,在介绍具有代表性的视觉注意模型(Itti模型)的基础上,在特征提取的初级阶段引入新的低层视觉特征,形成一种新的引导注意的显著图,从而实现较为准确的目标检测。结果证明该方法在一定程度上避免了漏检测现象的发生,使得注意区域更能接近生物视觉系统的实际。  相似文献   

5.
6.
7.
袁星星  吴秦 《计算机科学》2021,48(4):174-179
遥感图像中的目标具有密集性、多尺度和多角度等特性,这使得遥感图像多类别目标检测成为一项具有挑战性的课题.因此,文中提出了一种新的端到端的遥感图像目标检测框架.该框架通过提取显著性特征和不同卷积通道之间的相互关系来增强目标信息,抑制非目标信息,从而提高特征的表示能力.同时,在不增加模型参数的情况下,在卷积模块中添加多尺度...  相似文献   

8.
为了方便而快速地在图像中标出目标,提出了一种基于视觉注意的小目标检测方法。该方法对Itti通用视觉注意计算模型作了改进,将目标检测过程分为亮目标检测和暗目标检测。其中亮目标检测采用了简化的Itti模型,暗目标检测主要采用侧抑制网络模型,将亮目标检测与暗目标检测各自生成的显著图合成得到最终的显著图。通过设定一阈值得到图像的预注意区域,采用模糊C-均值算法进行图像分割,以便相对完整地标出每个目标。结果表明,算法能够有效地检测待检测目标。  相似文献   

9.
基于可见光遥感图像的海面目标检测技术是当前遥感领域的研究热点,为推进基于可见光遥感图像的海面目标检测技术的发展,文中对当前主要的检测方法进行了总结。首先,介绍了可见光遥感图像目标特性以及图像目标检测基本流程,并分析了遥感图像目标检测的研究现状;然后,针对海面目标快速检测问题,详细介绍了视觉显著性方法在遥感图像目标检测方面的研究现状;接着,针对遥感图像分类识别问题,详细介绍了卷积神经网络在遥感图像目标检测方面的研究现状;最后,总结了现有方法应用于海面目标检测存在的问题以及未来的研究方向。  相似文献   

10.
显著性目标检测通过模仿人的视觉感知系统,寻找最吸引视觉注意的目标,已被广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。随着深度学习技术的快速发展,显著性目标检测研究取得了巨大突破。本文总结了近5年相关工作,全面回顾了3类不同模态的显著性目标检测任务,包括基于RGB图像、基于RGB-D/T(Depth/Thermal)图像以及基于光场图像的显著性目标检测。首先分析了3类研究分支的任务特点,并概述了研究难点;然后就各分支的研究技术路线和优缺点进行阐述和分析,并简单介绍了3类研究分支常用的数据集和主流的评价指标。最后,对基于深度学习的显著性目标检测领域未来研究方向进行了探讨。  相似文献   

11.
基于视觉注意机制的彩色图像显著性区域提取   总被引:2,自引:0,他引:2  
孟琭 《计算机应用研究》2013,30(10):3159-3161
图像显著性区域提取是计算机视觉处理的重要步骤。结合人类视觉心理、生理模型, 提出一种基于视觉注意机制的彩色图像显著性区域提取模型。通过改进的分水岭算法对彩色图像进行预分割, 从而将原图像分成若干子区域, 在此基础上运用提出的区域化空间注意力模型对各个子区域进行显著图计算, 得到最终的显著性区域提取结果。实验结果表明, 提出的显著性区域提取算法可以很好地从彩色图像中得到与视觉注意机制相一致的结果, 且满足实时性要求, 与传统方法相比, 算法提取的区域更完整、更准确。  相似文献   

12.
图像压缩是遥感图像处理的重要研究领域,现有的压缩方法要么丢失重要的细节信息,无法满足实际的应用需要,要么压缩率过低,难以达到实时处理的要求。将视觉注意机制引入到遥感图像压缩中,对不同的显著性区域采用不同的压缩率,这样不仅可以对整个遥感图像达到一个高的压缩率,而且还可以保持重要区域的高分辨率,实现了可变分辨率的图像压缩。实验结果表明在前几个显著性区域中,该方法得到的图像压缩性能指标优于传统压缩方法得到的性能指标。  相似文献   

13.
目的 遥感图像目标检测是遥感图像处理的核心问题之一,旨在定位并识别遥感图像中的感兴趣目标。为解决遥感图像目标检测精度较低的问题,在公开的NWPU_VHR-10数据集上进行实验,对数据集中的低质量图像用增强深度超分辨率(EDSR)网络进行超分辨率重构,为训练卷积神经网络提供高质量数据集。方法 对原Faster-RCNN (region convolutional neural network)网络进行改进,在特征提取网络中加入注意力机制模块获取更多需要关注目标的信息,抑制其他无用信息,以适应遥感图像视野范围大导致的背景复杂和小目标问题;并使用弱化的非极大值抑制来适应遥感图像目标旋转;提出利用目标分布之间的互相关对冗余候选框进一步筛选,降低虚警率,以进一步提高检测器性能。结果 为证明本文方法的有效性,进行了两组对比实验,第1组为本文所提各模块间的消融实验,结果表明改进后算法比原始Faster-RCNN的检测结果高了12.2%,证明了本文所提各模块的有效性。第2组为本文方法与其他现有方法在NWPU_VHR-10数据集上的对比分析,本文算法平均检测精度达到79.1%,高于其他对比算法。结论 本文使用EDSR对图像进行超分辨处理,并改进Faster-RCNN,提高了算法对遥感图像目标检测中背景复杂、小目标、物体旋转等情况的适应能力,实验结果表明本文算法的平均检测精度得到了提高。  相似文献   

14.
目的 遥感图像目标检测在国防安全、智能监测等领域扮演着重要的角色。面对遥感图像中排列密集且方向任意分布的目标,传统水平框目标检测不能实现精细定位,大型和超大型的目标检测网络虽然有强大表征学习能力,但是忽略了模型准确率与计算量、参数量之间的性价比,也满足不了实时检测的要求,庞大的参数量和计算量在模型部署上也非常受限,针对以上问题,设计了一种轻量级的旋转框遥感图像目标检测模型(YOLO-RMV4)。方法 对原MobileNetv3网络进行改进,在特征提取网络中加入性能更好的通道注意力机制模块(efficient channel attention,ECA),并且对网络规模进行适当扩展,同时加入路径聚合网络(path aggregation network,PANet),对主干网络提取特征进行多尺度融合,为网络提供更丰富可靠的目标特征。网络检测头中则采用多尺度检测技术,来应对不同尺寸的目标物体,检测头中的角度预测加入了环形圆滑标签(circular smooth label,CSL),将角度回归问题转换为分类问题,从而使预测角度和真实角度之间的距离可以衡量。结果 将提出的检测模型在制备的AV...  相似文献   

15.
小目标检测用来识别图像中小像素尺寸目标.传统目标识别算法泛化性差,而通用的深度卷积神经网络算法容易丢失小目标的特征,对小目标识别的效果不甚理想.针对以上问题,提出了一种基于注意力机制的小目标检测深度学习模型AM-R-CNN,该模型在ResNet101主干网络和候选区域生成网络中使用了通道域注意力和空间域注意力,通道域注...  相似文献   

16.
提出一种基于视觉注意机制的彩色图像分割方法。受生物学启发,该方法模仿人类自下而上的视觉选择性注意过程,提取图像的底层特征,构造相应的显著图。根据显著图,检测出图像中的显著区域;将显著区域和背景分离,即得到图像分割结果。在多幅自然图像上进行实验,结果表明,该方法能够取得与人类视觉系统一致的分割结果。  相似文献   

17.
提出一种基于视觉注意的自然场景彩色图像支持向量机(Support Vector Machine,SVM)分割方法。基于人类视觉注意机制将图像进行预分割,得到图像的显著区域和非显著区域,利用形态学操作对得到的图像进行处理,并自动选取和标注SVM的训练样本,用训练后的SVM分类器对整幅图像进行分割。该方法充分利用视觉注意机制方法的有效信息,解决了其边界不确定的缺陷,并且结合具有很好泛化性能的SVM学习方法,在无需先验知识以及任何人工干预的情况下,实现对自然场景图像的分割。为验证算法的有效性,分别从加州大学伯克利分校图像数据库及互联网选取多幅彩色图像进行实验,实验结果表明:该方法的分割结果不仅与人类视觉注意结果相一致,而且与伯克利图像数据库中人工标注结果相比,得到较好分割效果。  相似文献   

18.
针对传统舰船检测方法在高分辨率光学遥感影像中虚警率较高的问题,提出了一种适用于高分辨率光学遥感影像的舰船检测算法。利用能够表征地物纹理特征的二维图像熵结合区域生长原理实现海陆分离,在舰船目标分割阶段,引入视觉显著性模型,解决了不能分割暗极性舰船目标的问题,大部分场景下分割精度较高。最后在分割出的候选目标中,采用多特征量综合的方法剔除虚警。结果表明,该算法在舰船目标检测中有较高的检测率和较低的虚警率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号