共查询到20条相似文献,搜索用时 46 毫秒
1.
模糊C均值(FCM)聚类算法广泛应用于图像的自动分割,但标准的FCM算法存在计算量大,运算速度慢等问题。对FCM算法进行改进,提出了一种快速FCM图像分割算法(FFCM),该算法将图像从像素空间映射到其灰度直方图特征空间,并在此基础上,充分利用像素的邻域特性,对隶属度函数做一定改进,实验结果表明该算法能快速有效地分割图像,并具有较好的抗噪能力。 相似文献
2.
路面图像裂缝自动检测技术是公路养护技术的重要方向,路面图像的分割是路面图像处理的关键步骤。由于噪声等干扰因素的影响,使得利用传统的模糊C_均值聚类(F(M) 算法进行路面图像分割得不到满意的结果。本文采用Ptile算法和直方图模糊C-均值聚类算法对路面图像进行分割,一方面克服了传统FCM运算量大、计算速度慢的缺点,另一 一方面减少分割算法分析的范围,增强了分割的效果。实验证明,本文算法能较好地分割出路面图像的裂缝。 相似文献
3.
目的 为进一步提高分割精度,在模糊聚类的基础上引入统计信息,提出一种鲁棒型空间约束的模糊聚类分割算法。方法 基于局部空间信息的先验概率与后验概率,提出一种新型空间约束项,并通过卷积操作提高运行效率;进而引入负对数联合概率作为测度函数,进一步提高算法对于各像素点所属类别的甄别能力;同时将测度函数与空间约束项整合至目标函数中,通过迭代更新各参数达到最小化目标函数的目的。结果 对于合成图像的实验结果表明,本文算法对于噪声类型和噪声强度具有较强的鲁棒性;对于彩色图像的实验结果表明,在适当的特征描述符的辅助下,本文算法也能够获得令人满意的分割结果和较高的分割精度。结论 本文算法克服了现有算法的缺陷,进一步提升了图像的分割精度。其适用于分割带噪声图像,且在适当纹理特征的辅助下分割彩色图像,与同类算法的比较实验结果验证了本文算法的有效性。 相似文献
4.
以模糊C均值(FCM)聚类理论为基础,选用符合人眼视觉特性的HSI颜色空间,提出了一种新的多分量彩色图像分割算法。该算法首先结合数据分布特点确定出H分量与I分量的初始聚类中心;然后利用FCM聚类技术对H分量、I分量进行分类处理,以得到不同分量的像素点隶属度;最后,将所得到的不同分量像素点隶属度组织成2维特征,并以此进行模糊聚类图像分割。实验结果表明,该算法可有效提高图像分割效果,其分割结果优于传统FCM聚类图像分割方案。 相似文献
5.
传统FCM算法仅考虑了图像像素的灰度信息,因此在分割含噪图像时效果较差。为了克服传统FCM算法的局限性,提出一种基于空间邻域信息的二维模糊聚类算法,该算法利用图像像素灰度和邻域灰度组成的二维直方图中对角线元素受噪声影响较小,反映图像中相对稳定的信息,且运算只与图像的灰度级数目有关的特征,实现噪声图像的分割。实验结果表明,该算法在分割含噪图像时,不仅提高了传统FCM算法的分割效果,且分割速度明显加快。 相似文献
6.
对噪声图像提出了一种改进的模糊聚类分割算法。因为模糊C均值聚类(FCM)算法具有对噪声数据敏感的缺点,该算法通过提升意义更趋明晰的模糊隶属度来改变模糊聚类中的目标函数,即通过在标准的FCM算法中使用到类的Voronoi cell的距离来取代到类的原型的欧氏距离,从而增强了聚类结果的鲁棒性。实验结果表明,改进的算法较之于FCM对于噪声图像的分割有更好的鲁棒性。 相似文献
7.
Mean shift 模糊C 均值聚类图像分割算法 总被引:1,自引:0,他引:1
针对传统模糊C均值(FCM)聚类算法对结构复杂图像分割效果不理想且算法执行效率较低的缺陷,提出一种融合均值平移(mean shift)的FCM聚类算法.利用mean shift算法将图像分成若干同质区域,将此区域视为新的节点;通过图像局部信息熵描述新节点的空间和灰度特征;采用能较好模拟人眼非线性视觉响应的指数函数进行相似性测度.实验结果表明,对于复杂背景图像和含噪声图像,所提出的算法在目标提取效果和执行效率上具有较强的鲁棒性. 相似文献
8.
针对Krinidis和公茂果等提出的系列鲁棒模糊局部C-均值聚类算法存在聚类中心迭代公式缺乏严格数学理论基础的不足,于是将其聚类目标函数及其约束条件采用拉格朗日乘子法进行严格数学推导,从而获得最优解逼近的隶属度和聚类中心迭代表达式,并通过多次循环迭代实现图像聚类分割。实验结果表明,本文所建议的鲁棒模糊局部C-均值聚类分割算法是有效的,相比现有鲁棒模糊局部C-均值聚类分割算法更适合复杂遥感等图像的分割需要。 相似文献
9.
针对传统模糊C均值(fuzzy C-means,FCM)算法以及结合空间信息的相关改进算法分割精度较低、对噪声敏感的问题,提出一种自适应灰度加权的鲁棒模糊C均值图像分割算法。首先,通过定义像素间的局部灰度相似性测度来反映各像素对局部邻域的影响程度,并根据邻域窗口中各像素的灰度差异,利用指数函数进一步控制邻域像素的影响权重,实现像素灰度的自适应加权,从而提高像素灰度计算的准确性。其次,构造出一种改进的距离测度代替传统的欧氏距离,用于计算各像素与聚类中心之间的相似距离,增强算法对噪声和异常值的鲁棒性。最后,将提出的自适应灰度加权方法与改进的距离测度应用到FCM算法中,实现图像分割。实验结果表明,该算法需根据图像噪声的强度适当地选取邻域窗口大小,在此条件下算法能够取得较优的分割效果和运行效率,且对噪声具有较强的鲁棒性。 相似文献
10.
本文提出了一种全新的基于图像片的模糊C均值聚类的图像分割方法.将图像片的思想引入聚类分割中,提出IPFCM方法,用局部的图像片来代替聚类分割中的像素点,从而增大不同类别之间的差异,并对隶属度更新函数进行改造使隶属度函数分布具有单峰值性.实验结果表明,本文方法具有较强的抗噪性和较高的分割精度,图像的隶属度函数与理想隶属度... 相似文献
11.
针对模糊C-均值聚类算法分割图像时容易产生模糊边缘的缺点,提出了一种结合图像梯度和模糊C-均值聚类的图像分割方法.该方法利用图像梯度反映出来的目标边界,对由模糊C-均值聚类所获得的聚类区域进行分割,把因模糊性而划分到目标区域的像素点与目标区域进行分离,同时利用区域增长方法找出干扰区域并删除.将该算法应用到胰腺ERCP图像分割,实验表明,改进算法能够比较准确地分割出图像中的目标,减少因模糊聚类产生的模糊边缘. 相似文献
12.
为提高现有模糊C均值聚类算法(FCM)对噪声图像分割的效果和稳定性,提出一种基于FCM的图像分割算法。利用非局部空间信息构建和图像,根据和图像的直方图,自动选择初始化聚类中心,通过求取目标函数极小值完成图像分割。理论分析和实验结果表明,该算法比现有算法更加有效和稳定,对噪声图像有更强的鲁棒性。 相似文献
13.
黄力明 《计算机工程与设计》2008,29(9):2300-2303
模糊C-均值聚类算法广泛用于图像分割,但存在聚类性能受类中心初始化影响,且计算量大等问题.为此,提出了一种基于微粒群的模糊C-均值聚类图像分割算法,该方法利用微粒群较强的搜索能力搜索聚类中心:由于搜索聚类中心是按密度进行,计算量小,故可以大幅提高模糊C-均值算法的计算速度.实验结果表明,该方法可以使模糊聚类的速度得到明显提高,实现图像的快速分割. 相似文献
14.
模糊C均值(FCM)被广泛应用于彩色图像分割中,但传统的模糊C均值由于没有考虑空间信息,因此对噪声特别敏感。针对此问题,提出了一种在HIS颜色空间结合像素邻域空间信息的模糊聚类新方法。实验结果表明,此方法对高噪声图像有较好的处理结果。 相似文献
15.
针对传统模糊C-均值聚类算法对初始值和噪声敏感的缺点,提出了一种基于多链量子蜂群算法的模糊C-均值聚类算法。首先,将多链拓展编码方案应用到量子蜂群算法中,提出了多链量子蜂群算法;其次,利用多链量子蜂群算法来优化模糊C-均值聚类的初始聚类中心;最后,设计一种新的利用多链量子蜂群算法优化模糊C-均值聚类中心的图像分割算法。实验结果表明,所提出的基于多链量子蜂群算法的模糊C-均值聚类图像分割算法是有效的,相对于传统模糊C-均值聚类算法及基于模糊的人工蜂群算法,所提算法在分割正确率、分割速度及鲁棒性上均更有效。 相似文献
16.
黄力明 《计算机工程与应用》2008,44(29):184-187
模糊C-均值聚类算法广泛用于图像分割,但存在聚类性能受类中心初始化影响,且计算量大等问题。为此,提出了一种基于微粒群的模糊C-均值聚类图像分割算法,该方法利用微粒群较强的搜索能力搜索聚类中心。由于搜索聚类中心是按密度进行,计算量小,故可以大幅提高模糊C-均值算法的计算速度。实验表明,这种方法可以使模糊聚类的速度得到明显提高,实现图像的快速分割。 相似文献
17.
针对传统分割算法难以对遥感图像进行有效分割的问题,提出了一种自适应特征减少的图像分割算法。首先对源图像进行超像素分割,将获得的超像素作为算法的基本操作对象。其次,提取图像的颜色、纹理、边缘以及空间等多维特征,并使用加权像素值来表示超像素的特征。再者,将模糊分离度量加入到FRFCM(feature-reduction fuzzy C-means)模型中,构造特征减少分割算法。该算法可以自动选择有用特征。最后对分割算法进行优化,获取最终分割结果。通过遥感图像分割实验表明,提出算法能有效分割遥感图像,在分割准确度、运行时间、消除噪声影响等性能方面优于其他同类算法。 相似文献
18.
脑磁共振成像(MRI)在临床上得到了大量的应用,准确分割脑组织结构可以提高脑疾病诊断的可靠性和治疗方案的有效性。模糊C-均值聚类(FCM)算法擅长解决图像中存在的模糊性和不确定性问题,是最常用的脑MRI分割方法。但因FCM仅利用图像灰度信息,没有考虑区域信息,导致其抗噪性能很差,常与区域信息结合进行改进。马尔可夫随机场(MRF)算法充分利用了图像区域信息,但容易出现过分割现象,因此FCM常与MRF进行结合改进。针对现有的FCM和MRF结合方式上存在的问题,提出了一种新型的自适应权值的FCM与MRF结合算法,用于脑MR图像分割。该算法利用了图像邻域像素的区域相关性,自适应的更新联合场的权值,改进了现有的权值固定的结合方式,充分发挥了FCM和MRF各自的优势,使二者结合更加合理。实验结果表明,本文算法较FCM和现存的一些FCM改进算法有更强的抗噪声能力和更高的分割精度。 相似文献
19.
20.
粒子群模糊聚类方法在病理图像分类中的应用 总被引:2,自引:1,他引:1
结合模糊C均值(FCM)算法局部搜索的特点,将PSO优化聚类结果作为后续FCM算法的初始值,使算法有很强的全局搜索能力.同时,采用Markov随机场与模糊聚类的耦合策略计算适应度函数,利用新的分类中心调整粒子位置,产生新的聚类中心,并将该方法应用于病理图像的分割.与传统的处理方法进行了比较,结果表明,该聚类更为准确且对病理图像的分割效果比原算法效果更好,但对于如何减少算法的运算量仍需作深入研究. 相似文献