首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently demonstrated that a single injection of 4,900 IU of interleukin-12 (IL-12) on the day of bone marrow transplantation (BMT) markedly inhibits acute graft-versus-host disease (GVHD) in a fully major histocompatibility complex plus minor antigen-mismatched BMT model (A/J --> B10, H-2(a) --> H-2(b)), in which donor CD4(+) T cells are required for the induction of acute GVHD. We show here that donor CD8-dependent graft-versus-leukemia (GVL) effects against EL4 (H-2(b)) leukemia/lymphoma can be preserved while GVHD is inhibited by IL-12 in this model. In mice in which IL-12 mediated a significant protective effect against GVHD, marked GVL effects of allogeneic T cells against EL4 were observed. GVL effects against EL4 depended on CD8-mediated alloreactivity, protection was not observed in recipients of either syngeneic (B10) or CD8-depleted allogeneic spleen cells. Furthermore, we analyzed IL-12-treated recipients of EL4 and A/J spleen cells which survived for more than 100 days. No EL4 cells were detected in these mice by flow cytometry, tissue culture, adoptive transfer, necropsies, or histologic examination. Both GVL effects and the inhibitory effect of IL-12 on GVHD were diminished by neutralizing anti-interferon-gamma (IFN-gamma) monoclonal antibody. This study demonstrates that IL-12-induced IFN-gamma production plays a role in the protective effect of IL-12 against GVHD. Furthermore, IFN-gamma is involved in the GVL effect against EL4 leukemia, demonstrating that protection from CD4-mediated GVHD and CD8-dependent anti-leukemic activity can be provided by a single cytokine, IFN-gamma. These observations may provide the basis for a new approach to inhibiting GVHD while preserving GVL effects of alloreactivity.  相似文献   

2.
Noninfectious lung injury is common after allogeneic bone marrow transplantation (BMT), but its association with acute graft-versus-host disease (GVHD) is unclear. Using a murine BMT system where donor and host differ by multiple minor histocompatibility (H) antigens, we investigated the nature of lung injury and its relationship both to systemic GVHD and host-reactive donor T cells. Lethally irradiated CBA hosts received syngeneic BMT or allogeneic (B10.BR) T-cell-depleted (TCD) bone marrow (BM) with and without the addition of T cells. Six weeks after BMT, significant pulmonary histopathology was observed in animals receiving allogeneic BMT compared with syngeneic controls. Lung damage was greater in mice that received allogeneic T cells and developed GVHD, but it was also detectable after TCD BMT when signs of clinical and histologic acute GVHD were absent. In each setting, lung injury was associated with significant alterations in pulmonary function. Mature, donor (Vbeta6(+) and Vbeta3(+)) T cells were significantly increased in the broncho-alveolar lavage (BAL) fluid of all allogeneic BMT recipients compared with syngeneic controls, and these cells proliferated and produced interferon-gamma (IFN-gamma) to host antigens in vitro. These in vitro responses correlated with increased IFN-gamma and tumor necrosis factor-alpha (TNF-alpha) in the BAL fluid. We conclude that alloreactive donor lymphocytes are associated with lung injury in this allogeneic BMT model. The expansion of these cells in the BAL fluid and their ability to respond to host antigens even when systemic tolerance has been established (ie, the absence of clinical GVHD) suggest that the lung may serve as a sanctuary site for these host reactive donor T cells. These findings may have important implications with regard to the evaluation and treatment of pulmonary dysfunction after allogeneic BMT even when clinical GVHD is absent.  相似文献   

3.
GVHD is a major complication in allogeneic bone marrow transplantation (BMT). MHC class I mismatching increases GVHD, but in MHC-matched BMT minor histocompatibility antigens (mH) presented by MHC class I result in significant GVHD. To examine the modification of GVHD in the absence of cell surface MHC class I molecules, beta2-microglobulin-deficient mice (beta2m(-/-)) were used as allogeneic BMT recipients in MHC- and mH-mismatched transplants. Beta2m(-/-) mice accepted MHC class I-expressing BM grafts and developed significant GVHD. MHC (H-2)-mismatched recipients developed acute lethal GVHD. In contrast, animals transplanted across mH barriers developed indolent chronic disease that was eventually fatal. Engrafted splenic T cells in all beta2m(-/-) recipients were predominantly CD3+alphabetaTCR+CD4+ cells (15-20% of all splenocytes). In contrast, CD8+ cells engrafted in very small numbers (1-5%) irrespective of the degree of MHC mismatching. T cells proliferated against recipient strain antigens and recognized recipient strain targets in cytolytic assays. Cytolysis was blocked by anti-MHC class II but not anti-CD8 or anti-MHC class I monoclonal antibodies (MoAbs). Cytolytic CD4+ T cells induced and maintained GVHD in mH-mismatched beta2m(-/-) mice, supporting endogenous mH presentation solely by MHC class II. Conversely, haematopoietic beta2m(-/-) cells were unable to engraft in normal MHC-matched recipients, presumably due to natural killer (NK)-mediated rejection of class I-negative cells. Donor-derived lymphokine-activated killer cells (LAK) were unable to overcome graft rejection (GR) and support engraftment.  相似文献   

4.
We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)-promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4-2. BALB/c mice receiving 2.5 x 10(5) 2B-4-2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5-day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.  相似文献   

5.
We have investigated the in vivo administration of nonmitogenic anti-CD3F(ab')2 fragments for the prevention of lethal graft-vs-host disease (GVHD) in irradiated recipients of fully allogeneic bone marrow cells plus splenocyte (BMS) inocula. Recipients of anti-CD3F(ab')2 fragments administered for 1 mo post-bone marrow transplantation (BMT) had 100% survival without clinical or histopathological evidence of GVHD. Controls given saline injections succumbed by 39 days post-BMT. Similar results were obtained in groups of recipient mice given BMS in which T cells were depleted by in vitro anti-Thy-1.2 plus C' treatment. Further studies were undertaken to define mechanistic differences in the two approaches. Using Ly-5 congenic sources of donor bone marrow and spleen, we determined that anti-CD3F(ab')2 fragments induced TCR modulation and T cell depletion. Mature splenic-derived CD4+ cells were depleted to a greater extent than CD8+ cells. Early post-BMT, recipients receiving injections with control saline had the highest number of CD4+ and CD8+ cells (which may cause GVHD) followed by recipients of anti-CD3F(ab')2 fragments, with the fewest CD8+ cells observed in the anti-Thy-1.2 + C' treated group. CD3+CD4-CD8- cells (which may suppress GVHD generation) were present in higher numbers early post-BMT in recipients given anti-CD3F(ab')2 fragments as compared to recipients given anti-Thy-1.2 + C'-treated BMS. In long term survivors, a mononuclear T cell containing infiltrate without evidence of destruction was observed in sites of GVHD (lung and liver), consistent with a "Quilty" effect, which was not observed in either of the other two groups. Although survivors were tolerant of donor skin grafts and rejected third party grafts, recipients given anti-CD3F(ab')2 fragments but not anti-Thy-1.2 + C'-treated BMS had vigorous anti-host proliferative responses. These results demonstrate that although in vitro anti-Thy-1.2 + C' treatment of BMS (which is highly depletionary) and in vivo administration of anti-CD3F(ab')2 fragments (which is modulatory and less depletionary) are both effective strategies for GVHD, the cellular events involved in achieving GVHD prevention are indeed different.  相似文献   

6.
Although in utero transplantation (IUT) has been shown to be effective in treating human severe combined immune deficiency (SCID), the relative merit of IUT as compared with postnatal bone marrow transplantation (BMT) for SCID is unknown. Therefore, comparative studies were undertaken in mice to determine the engraftment outcome in these two settings. Because T-cell depletion (TCD) reduces graft-versus-host disease (GVHD) severity but compromises alloengraftment, studies were performed with TCD or non-TCD BM and GVHD risk was assessed using a tissue scoring system and by the adoptive transfer of splenocytes from engrafted mice into secondary recipients. Non-SCID recipients received pre-BMT irradiation to simulate those circumstances in which conditioning is required for alloengraftment. IUT recipients of non-TCD and especially TCD BM cells in general had higher levels of donor T-cell and myeloid peripheral blood (PB) engraftment than nonconditioned SCID recipients. Increased TCD or non-TCD BM cell numbers in adult SCID recipients resulted in similar levels of PB engraftment as IUT recipients. However, under these conditions, mean GVHD scores were higher than in IUT recipients. The majority of adoptive transfer recipients of splenocytes from IUT recipients were GVHD-free, consistent with the in vitro evidence of tolerance to host alloantigens. Total body irradiation (TBI)-treated mice that had the highest engraftment had evidence of thymic damage as denoted by a higher proportion of thymic and splenic T cells with a memory phenotype as compared with IUT recipients. IUT mice had vigorous thymic reconstitution by 3 weeks of age. Our data indicate that IUT has a number of advantages as compared with postnatal BMT. Future studies examining the fine specificity of immunoreconstitution in IUT versus postnatal BMT are indicated.  相似文献   

7.
GVHD is prevented and stable chimerism is induced in the rat BMT model by 700 J/m2 but not 100-500 J/m2 UV-B irradiation of allogeneic BM cells. Paradoxically, CsA which prevents GVHD in clinical BMT causes an aggressive autoimmune disease termed syngeneic GVHD in irradiated syngeneic BMT recipients after its withdrawal. Recently, we have shown that while 500-700 J/m2 UV-B irradiation of syngeneic BM cells combined with a 30-day course of CsA recipient immunosuppression impairs hemopoiesis due to lack of hemopoietic factors, a low dose of 100-300 J/m2 UV-B is effective in preventing CsA-induced autoimmune disease without endangering BM engraftment. This study extends these findings to the P-to-F1 hybrid and fully allogeneic rat BMT models and examines the effectiveness of low-dose UV-B irradiation of BM cells combined with a short course of CsA treatment in the prevention of GVHD and induction of transplant tolerance. Lethally gamma-irradiated (10.5 Gy) LBNF1 recipients of naive or UV-B irradiated (100-700 J/m2) BMT were treated with CsA (12.5 mg/kg/day) for 30 consecutive days after BMT. All lethally irradiated LBNF1 that did not receive BMT died in < 16 days, while animals transplanted with UV-B (700 J/m2) BMT survived > 1 year without GVHD. In contrast, all recipients of naive BMT died of lethal GVHD in < 50 days. Similarly, all recipients of naive BMT that received a 30-day course of CsA therapy developed severe GVHD with 60% mortality after cessation of CsA therapy. CsA-treated recipients of BMT irradiated with 700 J/m2 died between 12 and 25 days from failure of hemopoiesis. In contrast, CsA-treated recipients of 100-200 J/m2 UV-B irradiated BMT showed full BM engraftment without GVHD after cessation of CsA and survived > 1 year. These results were reproducible in the fully allogeneic UV-B BMT model. To test for donor-specific tolerance, the animals challenged 100 days after BMT with cardiac allografts accepted permanently (> 100 days) Lewis but not BN (non-BMT parental donor) cardiac allografts. Our results confirm that 700 J/m2 UV-B irradiation of BM cells combined with CsA recipient immunosuppression impairs the recovery capacity of stem cells while the use of lower UV-B (100-200 J/m2) is effective in preventing CsA-induced autoimmune disease without endangering BM engraftment and leads to induction of transplant tolerance.  相似文献   

8.
Graft-versus-host disease (GVHD), in which immunocompetent donor cells attack the host, remains a major cause of morbidity after allogeneic bone marrow transplantation (BMT). To understand the role of cytokines in the pathobiology of GVHD, we used cytokine knockout (KO) mice as a source of donor T cells. Two different MHC-disparate strain combinations were examined: BALB/c (H2(d)) donors into lethally irradiated C57BL/6 (H2(b)) recipients or C57BL/6 (H2(b)) donors into B10.BR (H2(k)) recipients. Donor cells were from mice in which either the interferon-gamma (IFN-gamma) or the IL-4 gene was selectively disrupted to understand the role of these cytokines in acute GVHD. In both strain combinations the same pattern was noted with regard to GVHD onset and morbidity. All mice exhibited the classic signs of acute GVHD: weight loss with skin, gut, and liver pathology resulting in morbidity and mortality. Surprisingly, donor cells obtained from mice lacking IFN-gamma gave rise to accelerated morbidity from GVHD when compared with cells from wild-type control donors. Similar results were obtained using normal donors when neutralizing antibodies to IFN-gamma were administered immediately after the BMT. These results suggest that IFN-gamma plays a role in protection from acute GVHD. In marked contrast, cells obtained from IL-4 KO mice resulted in protection from GVHD compared with control donors. Splenocytes from IFN KO mice stimulated with a mitogen proliferated to a significantly greater extent and produced more IL-2 compared with splenocytes obtained from IL-4 KO or control mice. Additionally, there was increased IL-2 production in the spleens of mice undergoing GVHD using IFN-gamma KO donors. These results therefore indicate, with regard to the TH1/ TH2 cytokine paradigm, the absence of a TH1-type cytokine can be deleterious in acute GVHD, whereas absence of a TH2 cytokine can be protective.  相似文献   

9.
This study will evaluate the safety and efficacy of allogenic donor lymphocyte infusions in patients who have relapsed hematologic malignancies after allogeneic bone marrow transplantation (BMT). Donor lymphocyte transfusions have resulted in the cure of some patients with relapsed leukemia or lymphoproliferative disorder after allogeneic BMT, but has been complicated by the development of graft versus host disease (GvHD). We hypothesize that a retroviral vector containing the Herpes simplex thymidine kinase (HStk) gene will allow for retention of the anti-leukemia response of transfused donor lymphocytes while allowing for the adverse effects of GVHD to be mitigated. Patients with relapsed hematologic malignancies after allogeneic BMT will be infused with ex vivo gene modified donor lymphocytes. The Herpes Simplex thymidine kinase (HStk) gene will be transduced into the cells ex vivo using LTKOSN. 1 vector supernate. Insertion of the HStk gene into lymphocytes confers a sensitivity to the anti-herpes drug ganciclovir (GCV). This selective destruction of donor lymphocytes in situ will be used to abrogate the effect of graft versus host disease, if it develops.  相似文献   

10.
Radioresistant host elements mediate positive selection of developing thymocytes, whereas bone marrow-derived cells induce clonal deletion of T cells with receptors that are strongly autoreactive. In contrast to T cell development, little is known about the elements governing the natural killer (NK) cell repertoire, which, similar to the T cell repertoire, differs between individuals bearing different major histocompatibility complex (MHC) phenotypes. We have used murine bone marrow transplantation models to analyze the influence of donor and host MHC on an NK cell subset. We examined the expression of Ly-49, which is strongly expressed on a subpopulation of NK cells of H-2b mice, but not by NK cells of H-2a mice, probably because of a negative effect induced by the interaction of Ly-49 with Dd. To evaluate the effect of hematopoietic cell H-2a expression on Ly-49 expression of H-2b NK cells, we prepared mixed allogeneic chimeras by administering T cell-depleted allogeneic (B10.A, H-2a) and host-type (B10, H-2b) marrow to lethally irradiated B10 mice, or by administering B10. A marrow to B10 recipients conditioned by a nonmyeloablative regimen. Expression of H-2a on bone marrow-derived cells was sufficient to downregulate Ly-49 expression on both H-2a and H-2b NK cells. This downregulation was thymus independent. To examine the effect of H-2a expressed only on radioresistant host elements, we prepared fully allogeneic chimeras by administering B10 bone marrow to lethally irradiated B10.A recipients. B10 NK cells of these fully allogeneic chimeras also showed downregulation of Ly-49 expression. The lower level of H-2a expressed on H-2b x H-2a F1 cells induced more marked downregulation of Ly-49 expression on B10 NK cells when presented on donor marrow in mixed chimeras than when expressed only on radioresistant host cells. Our studies show that differentiation of NK cells is determined by interactions with MHC molecules expressed on bone marrow-derived cells and, to a lesser extent, by MHC antigens expressed on radioresistant host elements.  相似文献   

11.
Although T-cell receptor (TCR) alpha/beta expressing cells have a well-known role in graft-versus-host disease (GVHD) generation, the role of TCR gamma/delta expressing cells in this process has remained unclear. To elucidate the potential function of TCR gamma/delta cells in GVHD, we have used transgenic (Tg) H-2d mice (termed G8) that express gamma/delta heterodimers on a high proportion of peripheral T cells. In vitro, G8 Tg gamma/delta T cells proliferate to and kill C57BL/6 (B6) (H-2b) which express gene products (T10b and T22b) from the nonclassical major histocompatibility complex (MHC) class Ib H-2T region. The infusion of G8 Tg (H-2Td) TCR gamma/delta cells into lethally irradiated [900 cGy total body irradiation (TBI)] B6 (H-2b) mice resulted in the generation of lethal GVHD characterized histologically by destruction of the spleen, liver, lung, and colon. Lethal GVHD was prevented by the injection of anti-TCR gamma/delta monoclonal antibodies. Immunohistochemical analysis of B6 recipients post-bone marrow transplantation (BMT) confirmed that G8 Tg TCR gamma/delta cells infiltrated GVHD target tissues (skin, liver, colon, and lung) and were absent in recipients treated with anti-TCR gamma/delta monoclonal antibodies (MoAbs) but not anti-CD4 plus anti-CD8 MoAbs. In contrast, injection of TCR gamma/delta+ cells into irradiated (900 cGy TBI) B6.A-TIaa BoyEg mice that do not express either T10b or T22b did not induce lethal GVHD. Similarly, in a different GVHD system in which sublethal irradiation without bone marrow (BM) rescue was used, B6 but not B6.A-TIaa/BoyEg mice were found to be susceptible to TCR gamma delta+ cell mediated GVHD-induced lethality characterized by an aplasia syndrome. These results demonstrate that TCR gamma/delta cells have the capacity to cause acute lethal GVHD in mice and suggest that nonclassical MHC class Ib gene products expressed on GVHD target organs are responsible for G8 Tg TCR gamma/delta+ cell mediated lethality.  相似文献   

12.
To gain further insights in the pathogenesis of herpesvirus pneumonia in allogeneic bone marrow transplant recipients, transplanted mice (B10.BR --> CBA) with graft-versus-host disease (GVHD) and control mice (transplanted mice without GVHD and normal CBA mice) were infected intranasally with herpes simplex virus type 1 (HSV-1). When compared with infected control mice, infected allogeneic transplant recipients with GVHD showed increased periluminal mononuclear cell infiltrates. However, infected allogeneic transplant recipients with GVHD showed lower virus content in the lung tissue than infected control mice. High concentrations of transforming growth factor-beta 1 (TGF-beta1) were detected in the bronchoalveolar lavage (BAL) fluid of mock-infected allogeneic transplant recipients with GVHD, which increased slightly after infection. Anti-TGF-beta treatment of allogeneic transplant recipients with GVHD significantly decreased the histological evidence of pneumonitis at day 4 after HSV-1 infection. We conclude that allogeneic transplant recipients with GVHD have (1) increased pneumonia, (2) highly elevated levels of TGF-beta1 in the BAL fluid, and (3) reduced pulmonary virus content after HSV-1 infection. Our data suggest that the newly recognized dysregulation of cytokine (TGF-beta1) production may be more important than the viral load for the increased severity of HSV-1 pneumonia in allogeneic transplant recipients with GVHD.  相似文献   

13.
BACKGROUND: We have recently reported that interleukin (IL)-12 prevents acute graft-versus-host disease (GVHD)-induced mortality in a full major histocompatibility complex- plus multiple minor antigen-mismatched A/J-->B10 bone marrow transplantation (BMT) model. Because most patients have access to a haploidentical, one haplotype-mismatched donor, we have now investigated the protective effect of IL-12 against GVHD and GVHD-associated immune dysfunction in a haploidentical CBD2F1 (H2kxd) --> B6D2F1 (H2bxd) strain combination. METHODS: GVHD was induced by injecting CBD2F1 marrow and spleen cells into lethally irradiated B6D2F1 mice. RESULTS: In untreated control mice, GVHD resulted in 87% mortality by day 8 after BMT, with no survivors beyond day 17. Treatment with a single injection of IL-12 on the day of BMT led to 87% long-term survival, with no significant weight loss, diarrhea or GVHD skin changes. The majority of T cells recovering in these mice showed the CD62L+, CD44low, CD45RBhigh naive phenotype. These T cells showed specific tolerance to both host and donor histocompatibility antigens, but normal anti-third party (H2s) alloresponses in vitro. B-cell proliferative responses to lipopolysaccharide were also normal in IL-12-protected mice. Moreover, normal negative selection of thymocytes bearing T cell receptors with Vbeta that recognize endogenous superantigens was observed among CD4+CD8- thymocytes, indicating a lack of GVHD-associated thymic selection abnormalities in IL-12-protected allogeneic BMT recipients. CONCLUSIONS: IL-12 provides permanent protection against an otherwise severe, rapidly lethal GVHD, with no clinical manifestations of chronic GVHD, immunosuppression or autoimmune features, in a full major histocompatibilty complex haplotype-mismatched murine BMT model.  相似文献   

14.
T cells with antidonor specificities have been isolated from human recipients experiencing graft rejection after allogeneic bone marrow transplantation (BMT). Partial T-cell depletion of unrelated BM grafts with an anti- T-cell receptor (TCR) monoclonal antibody (MoAb) directed against the TCR alpha/beta heterodimer have shown that the incidence of graft-versus-host disease is low and that the incidence of durable engraftment is high. These studies suggest either that the number of residual TCR alpha/beta+ cells was sufficient to permit alloengraftment or that the preservation of cells other than TCR alpha/beta+ cells was beneficial for engraftment. With respect to the latter, one such candidate cell is the TCR gamma/delta+ T cell. Because no studies have specifically examined whether TCR gamma/delta+ cells might be capable of eliminating BM-derived hematopoietic cells, we established a new graft rejection model system in which transgenic (Tg) H-2d mice (termed G8), known to express gamma/delta heterodimers on high proportion of peripheral T cells, were used as BMT recipients. These Tg TCR gamma/delta+ cells respond vigorously to target cells that express the nonclassical major histocompatibility complex (MHC) class lb region gene products encoded in H-2T region of H-2T(b)+ strains. G8 Tg mice were used as recipients for C57BL/6 (B6: H-2(b); H-2T(b)) T-cell-depleted (TCD) donor BM. We show that G8 Tg (H-2(d), H-2T(d)) mice are potent mediators of B6 BM graft rejection and that the rejection process was inhibited by anti-TCR gamma/delta MoAbs. In contrast, BM from a B6 congenic strain that expresses the H-2T(a) allele, B6.A-Tl(a)/BoyEg, was readily accepted, suggesting that H-2T antigens on repopulating donor BM cells are the targets of host graft rejecting T cells that express the TCR gamma/delta heterodimer. PB chimerism studies were performed at > or = 1.5 months post-BMT using TCD BM from severe combined immunodeficient allogeneic donors, which is highly susceptible to rejection by the host. The addition of donor G8 TCR gamma/delta+ cells to TCD donor BM was shown to significantly increase alloengraftment in B6 recipients. These results show that (1) host TCR gamma/delta+ cells can reject repopulating donor cells, presumably by responding to nonclassical MHC class lb gene products expressed on BM-derived hematopoietic progenitor cells; and (2) donor TCR gamma/delta+ cells can facilitate the alloengraftment of rigorously TCD donor BM.  相似文献   

15.
Our previous results in a murine model indicated that the GVL effect against radiation-induced leukemias could be induced in not only MHC-incompatible but also MHC-compatible allogeneic BMT, and that the intensity of the GVL effect induced in MHC-compatible allogeneic BMT varied among different leukemias and the donor/host strain combinations used. With the use of a radiation-induced T cell leukemia which followed the induction of the GVL effect in both MHC-compatible and -incompatible, allogeneic BMT, the role of T cell subsets in the development of the GVL effect and GVHD was studied. The results indicated that Lyt2+ T cells contaminating donor BM were consistently critical for the induction of the GVL effect in MHC-incompatible (B10) and -compatible (B10.BR and AKR) allogeneic BMT of leukemia-bearing C3H mice, but the depletion of L3T4+ T cells had no effect. In contrast, lethal GVHD induced by AKR donor lymph node cells was totally dependent on L3T4+ T cells, but the depletion of Lyt2+ T cells had no effect. On the other hand, both T cell subsets could cause lethal GVHD induced by MHC-incompatible (B10) and -compatible (B10.BR) allogeneic donors. The distinct roles of T cell subsets of AKR donors were confirmed by the preferential induction of the GVL effect with the AKR donor bone marrow mixed with lymph node cells which had been depleted of L3T4+ T cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Keratinocyte growth factor (KGF) is important in tissue repair and wound healing and its administration can abrogate chemical- and radiation-induced tissue damage in rodents. We investigated KGF as a therapeutic agent for the prevention of graft-versus-host disease (GVHD)-induced tissue damage, morbidity, and mortality in an established murine allogeneic bone marrow transplantation (BMT) model. B10.BR (H2(k)) recipient mice were lethally irradiated and transplanted with C57BL/6 (H2(b)) bone marrow (BM) with spleen cells (BMS) as a source of GVHD-causing T cells. KGF-treated mice (5 mg/kg/d subcutaneously days -6, -5, and -4 pre-BMT) receiving BMS exhibited better survival than those not receiving KGF (P =.0027). Cyclophosphamide (Cy), a common component of total body irradiation (TBI)-containing regimens, was administered to other cohorts of mice at a dose of 120 mg/kg/d intraperitoneally on days -3 and -2 before BMT. KGF-treated mice again exhibited a better survival rate than those not receiving KGF (P =.00086). However, KGF-treated recipients receiving TBI or Cy/TBI BMS were not GVHD-free, as shown by lower body weights compared with BM groups. GVHD target tissues were assessed histologically during a 38-day post-BMT observation period. KGF ameliorated GVHD-induced tissue damage in the liver, skin, and lung (completely in some recipients) and moderately so in the spleen, colon, and ileum, even with Cy conditioning. These studies demonstrate that KGF administration, completed before conditioning, has potential as an anti-GVHD therapeutic agent.  相似文献   

17.
The purpose of this study was to determine whether the administration of high doses of an anti-T-cell receptor (TCR) monoclonal antibody (H57-597) to donor animals could induce a state of T-cell nonresponsiveness and prevent the development of graft-versus-host disease (GVHD) in murine recipients of major histocompatibility complex (MHC)-matched (B10.BR[H-2k] --> AKR/J[H-2k]) and mismatched (B10.BR[H-2k] --> DBA/2[H-2d]) marrow grafts. Transplantation of H57-597-treated B10.BR T cells into irradiated AKR or DBA mice resulted in protection from GVHD, which was otherwise lethal in transplanted recipients receiving untreated T cells. The administration of H57-597-treated T cells did not compromise alloengraftment in either strain combination and was found to accelerate donor T-cell reconstitution in recipients of MHC-matched marrow grafts. Optimal protection for GVHD was dependent on the duration of antibody exposure in donor mice. T cells from donor exposed to antibody for only 1 day caused lethal GVHD, whereas exposure for at least 4 days was necessary to abrogate graft-versus-host reactivity. The ability of antibody treatment to protect against the development of GVHD could not be ascribed to the antibody-induced production of Th2 cytokines, the induction of a T- or non-T-suppressor cell population, or the preferential depletion of CD4+ T cells by H57-597. Donor T cells exposed to H57-597 antibody were detectable in recipients for up to 5 weeks after transplantation, indicating that these cells were not eliminated in the host immediately after bone marrow transplantation and contributed to enhanced donor T-cell reconstitution. Moreover, in B10.BR --> DBA chimeras that did not have any clinical evidence of GVHD, potentially MIs-reactive donor-derived Vbeta6+ T cells were present in the spleens of recipients at comparable numbers to normal mice but appeared functionally nonresponsive in vivo. These data strongly suggested that protection from GVHD was due to the fact that antibody treatment resulted in a state of prolonged T-cell anergy that persisted despite the presence of potential costimulatory signals in the recipient. This observation is of potential clinical significance in that it shows that the prevention of GVHD can be accomplished without posttransplantation immunosuppression or the need for in vitro or in vivo T-cell depletion.  相似文献   

18.
UV-B irradiation (700 J/m2) of bone marrow cells (BMC) before transplantation into lethally irradiated (1050R) allogeneic rats prevents graft-versus-host disease (GVHD) and results in stable chimerism. This study examined whether UV-B modulation of BMT is useful in the subsequent induction of tolerance to small bowel transplant (SBT) and avoids the danger of GVHD, which remains the major obstacle to successful SBT. Lethally irradiated Lewis recipients of UV-B irradiated (700 J/m2) BMT (10(8) BMC admixed with 5 x 10(6) splenic leukocytes) either from ACI or Wistar-Furth (WF) rats developed stable chimerism without any evidence of GVHD for > 360 days. Lewis recipients of UV-B ACI BMC expressed 95 +/- 6% ACI lymphoid cells at 50 and 150 days after BMT using complement-dependent cytotoxicity assay. Unmodified Lewis recipients of orthotopic ACI SBT rejected their grafts and died in 7-9 days, whereas Lewis chimeras accepted permanently (> 200 days) bone marrow donor (ACI) SBT without any evidence of GVHD when the SBT was performed at 60 or 150 days after BMT. In contrast, when SBT was performed, only 30 days after induction of chimerism with UV-B ACI BMT, the recipients developed severe GVHD and died between 17 and 21 days. The Lewis chimeras rejected third part (WF) SBT acutely and died in 7-9 days, thus demonstrating the specificity of the induction of tolerance in this model. That this immunologic unresponsiveness is not restricted by the recipient-donor rat strain combination was shown by the permanent acceptance of WF SBT without GVHD by Lewis/WF chimeric recipients. Furthermore, the Lewis chimeras that were made diabetic with STZ 28 days after BMT permanently accepted (> 300 days) BM donor-type (WF) and recipient-type (Lewis) islet cells and became normoglycemic, thus indicating tolerance to both donor and recipient Ags. The diabetic Lewis chimeras that became normoglycemic permanently accepted (> 200 days) WF SBT without any evidence of GVHD after donor-type SBT 110 days after WF islet transplantation. The apparent lack of organ-specific unresponsiveness in this model confirmed our previous observation with combined islet and heart transplants. In vitro MLR studies showed that the chimeric animals were specifically unreactive to donor- and recipient-type alloantigens. Our results demonstrate that UV-B irradiation of BMT is a promising approach to the induction of tolerance to SBT.  相似文献   

19.
Tumor relapse remains a major obstacle to the success of allogeneic bone marrow transplantation (BMT) as a treatment for leukemia. Due to limited treatment options, the outlook for most patients that relapse following allogeneic BMT has been poor. The infusion of normal immunocompetent leukocytes from the original marrow donor has become a promising new option for treating/preventing leukemia relapse in allogeneic BMT recipients. This form of treatment has often been referred to as donor leukocyte infusion (DLI) therapy. Our laboratory is using murine models of allogeneic BMT to address important unresolved issues regarding DLI therapy in an effort to make the treatment more effective. These include identification of the antileukemic effector cells, augmentation of the antileukemic effect, and understanding why graft-versus-host-disease (GVHD) is less severe than anticipated. This article reviews our work in murine models of DLI and introduces our current working hypotheses concerning DLI therapy.  相似文献   

20.
Allogeneic CD8+ T cells mediate both a graft-vs-leukemia (GVL) effect and graft-vs-host disease (GVHD). To evaluate whether CD8 cells of defined cytokine phenotype differentially mediate these processes, alloreactive donor CD8+ T cells preferentially secreting type I or type II cytokines were generated by alloantigenic priming in vitro in the presence of IL-12 or IL-4, respectively. Both cytokine-secreting subsets lysed allogeneic tumor targets in vitro ("Tc1" and "Tc2" subsets). A transplantation model was established (B6 into B6C3F1, 1050 cGy host irradiation) using the 32Dp210 myeloid line (bcr/abl transfected, H-2k; 1 x 10(4) tumor cells/recipient). Compared with leukemia controls (death at 12.9 days post-bone marrow transplantation), both Tc1 and Tc2 recipients were conferred a survival advantage. At cell doses of 2 to 2.5 x 10(7), the Tc1-mediated GVL effect (mean survival of 34.2 days) was more potent than the Tc2-mediated GVL effect (mean survival of 20.5 days; Tc1 > Tc2, p = 0.009). On day 15, histologic examination showed that Tc1 recipients had undetectable tumor burdens, whereas Tc2 recipients had extensive leukemic infiltrates. However, Tc2 recipients had essentially no histologic evidence of GVHD, whereas Tc1 recipients had mild to moderate GVHD (average GVHD scores of 1/40 and 9.3/40, respectively). In contrast, recipients of uncultured CD8+ donor T cells developed severe GVHD (average GVHD score of 26.7/40). Because in vitro-generated, alloreactive Tc1 and Tc2 populations mediated GVL with reduced GVHD, we conclude that both subsets may improve the therapeutic outcome of allogeneic T cell transfers in patients with leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号