首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new discontinuous Galerkin method for elliptic problems which is capable of rendering the same set of unknowns in the final system of equations as for the continuous displacement‐based Galerkin method is presented. Those equations are obtained by the assembly of element matrices whose structure in particular cases is also identical to that of the continuous displacement approach. This makes the present formulation easily implementable within the existing commercial computer codes. The proposed approach is named the embedded discontinuous Galerkin method. It is applicable to any system of linear partial differential equations but it is presented here in the context of linear elasticity. An application of the method to linear shell problems is then outlined and numerical results are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A four‐node shell finite element of arbitrary quadrilateral shape is developed and applied to the solution of static and vibration problems. The element incorporates five generalized degrees of freedom per node, namely the three displacements of the curved middle surface and the two rotations of its normal vector. The stiffness properties of the element are defined using isoparametric principles in a local co‐ordinate system with axes approximately parallel to the edges of the element. The formulation is based on a modern, refined variant of the shallow shell models found from the classical books on shell theory. In addition, the bending behavior of the element is improved with numerical modifications, which include mixed interpolation of the membrane and transverse shear strains. The numerical experiments show that the element is able to compete in accuracy with the highly reputable bilinear elements of the commercial codes ABAQUS and ADINA. The new formulation even outperforms its commercial rivals in problems with strong layers such as vibration problems or problems with concentrated loads. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A p-Adaptive Generalized Finite Element Method (GFEM) based on a Partition of Unity (POU) of arbitrary smoothness degree is presented. The shape functions are built from the product of a Shepard POU and enrichment functions. Shepard functions have a smoothness degree directly related to the weighting functions adopted in their definition. Here the weighting functions are obtained from boolean R-functions which allow the construction of C k approximations, with k arbitrarily large, defined over a polygonal patch of elements, named cloud. The Element Residual Method is used to obtain error indicators by taking into account the typical nodal enrichment scheme of the method. This procedure is enhanced by using approximations with a high degree of smoothness as it eliminates the discontinuity of the stress field in the interior of each cloud. Adaptive analysis of plane elasticity problems are presented, and the performance of the technique is investigated.  相似文献   

4.
We study the shell models arising in the numerical modelling of shells by bilinear degenerated shell finite elements. The numerical model of a cylindrical shell obtained by using flat shell elements is given an equivalent formulation based on a classical two‐dimensional shell model. We use the connection between the models to explain how a parametric error amplification difficulty or locking is avoided by some elements. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes an adaptive hp-version mesh refinement strategy and its application to the finite element solution of one-dimensional flame propagation problems. The aim is to control the spatial and time discretization errors below a prescribed error tolerance at all time levels. In the algorithm, the optimal time step is first determined in an adaptive manner by considering the variation of the computable error in the reaction zone. Later, the method uses a p-version refinement till the computable a posteriori error is brought down below the tolerance. During the p-version, if the maximum allowable degree of approximation is reached in some elements of the mesh without satisfying the global error tolerance criterion, then conversion from p- to h-version is performed. In the conversion procedure, a gradient based non-uniform h-version refinement has been introduced in the elements of higher degree approximation. In this way, p-version and h-version approaches are used alternately till the a posteriori error criteria are satisfied. The mesh refinement is based on the element error indicators, according to a statistical error equi-distribution procedure. Numerical simulations have been carried out for a linear parabolic problem and premixed flame propagation in one-space dimension. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents improvements to three‐dimensional crack propagation simulation capabilities of the generalized finite element method. In particular, it presents new update algorithms suitable for explicit crack surface representations and simulations in which the initial crack surfaces grow significantly in size (one order of magnitude or more). These simulations pose problems in regard to robust crack surface/front representation throughout the propagation analysis. The proposed techniques are appropriate for propagation of highly non‐convex crack fronts and simulations involving significantly different crack front speeds. Furthermore, the algorithms are able to handle computational difficulties arising from the coalescence of non‐planar crack surfaces and their interactions with domain boundaries. An approach based on moving least squares approximations is developed to handle highly non‐convex crack fronts after crack surface coalescence. Several numerical examples are provided, which illustrate the robustness and capabilities of the proposed approaches and some of its potential engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We propose the study of a posteriori error estimates for time‐dependent generalized finite element simulations of heat transfer problems. A residual estimate is shown to provide reliable and practically useful upper bounds for the numerical errors, independent of the heuristically chosen enrichment functions. Two sets of numerical experiments are presented. First, the error estimate is shown to capture the decrease in the error as the number of enrichment functions is increased or the time discretization refined. Second, the estimate is used to predict the behaviour of the error where no exact solution is available. It also reflects the errors incurred in the poorly conditioned systems typically encountered in generalized finite element methods. Finally, we study local error indicators in individual time steps and elements of the mesh. This creates a basis towards the adaptive selection and refinement of the enrichment functions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A finite element (FE) implementation for sandwich shell through‐thickness homogenization is presented. The homogenization is performed within the analysis constitutive procedure and is suitable for the FE analysis of sandwich shells using explicit time‐integration scheme. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, the obstacle problems, also known as the non-linear free boundary problems, are analyzed by the generalized finite difference method (GFDM) and the fictitious time integration method (FTIM). The GFDM, one of the newly-developed domain-type meshless methods, is adopted in this study for spatial discretization. Using GFDM can avoid the tasks of mesh generation and numerical integration and also retain the high accuracy of numerical results. The obstacle problem is extremely difficult to be solved by any numerical scheme, since two different types of governing equations are imposed on the computational domain and the interfaces between these two regions are unknown. The obstacle problem will be mathematically formulated as the non-linear complementarity problems (NCPs) and then a system of non-linear algebraic equations (NAEs) will be formed by using the GFDM and the Fischer–Burmeister NCP-function. Then, the FTIM, a simple and powerful solver for NAEs, is used solve the system of NAEs. The FTIM is free from calculating the inverse of Jacobian matrix. Three numerical examples are provided to validate the simplicity and accuracy of the proposed meshless numerical scheme for dealing with two-dimensional obstacle problems.  相似文献   

10.
11.
12.
We study experimentally the accuracy and reliability of some low‐order shell finite element schemes based on modifying the standard displacement formulation by reduced‐strain expressions. We focus on quadrilateral elements with a quadratic displacement approximation. Three benchmark problems with different asymptotic behaviour in the limit of zero shell thickness is used in the experiments. Following the error analysis of a reduced‐strain scheme, we study two components of the total error, the approximation error and the consistency error. We demonstrate that the performance of the methods is both case and mesh dependent. When a bending dominated problem is solved, none of the methods studied can avoid the usual worst‐case locking effect of the approximation error on general meshes. For a membrane dominated problem the total error is typically dominated by the consistency error which often convergences slowly. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non‐linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite element program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four‐node tetrahedron through a higher‐order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper addresses the issue of a p‐adaptive version of the generalized finite element method (GFEM). The technique adopted here is the equilibrated element residual method, but presented under the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method. Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions. These functions, in the case of the element residual method are monomials, and can be used to build the polynomial space, one degree higher than the one of the solution, in which the error functions is approximated. Global and local measures are defined and used as error estimator and indicators, respectively. The error indicators, calculated on the element patches that surrounds each node, are used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining in particular the effectivity index of the error estimator proposed. Finally, the ‐adaptive procedure is described and its good performance is illustrated by the last numerical example. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
We present a new method for enforcing boundary conditions within subdivision finite element simulations of thin shells. The proposed framework is demonstrated to be second-order accurate with respect to increasing refinement in the displacement and energy norm for simply supported, clamped, free and symmetric boundary conditions. Second-order accuracy on the boundary is consistent with the accuracy of subdivision-based approaches for the interior of a body. Our proposed framework is applicable to both triangular and quadrilateral refinement schemes, and does not impose any topological requirements upon the underlying subdivision control mesh. Several examples from an obstacle course of benchmark problems are used to demonstrate the convergence of the scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper a family of higher-order quadrilaterals for the finite element analysis of plane elasticity problems are developed, using the displacement method formulation. The number of nodes and the number of elements are fixed, and refinement is achieved by adding derivatives of the nodal displacements as degrees of freedom at the nodes. It is shown that a higher rate of convergence is achieved compared with existing h- and p-versions of the finite element method. Applications to stress concentration and stress singularity are presented and the condition number is checked. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
The extended finite element method has been successful in the numerical simulation of fracture mechanics problems. With this methodology, different to the conventional finite element method, discretization of the domain with a mesh adapted to the geometry of the discontinuity is not required. On the other hand, in traditional fracture mechanics all variables have been considered to be deterministic (uniquely defined by a given numerical value). However, the uncertainty associated with these variables (external loads, geometry and material properties, among others) it is well known. This paper presents a novel application of the perturbation method along with the extended finite element method to treat these uncertainties. The methodology has been implemented in a commercial software and results are compared with those obtained by means of a Monte Carlo simulation.  相似文献   

18.
Several engineering applications give rise quite naturally to linearized FE systems of equations possessing a multi‐level structure. An example is provided by geomechanical models of layered and faulted geological formations. For such problems the use of a multi‐level incomplete factorization (MIF) as a preconditioner for Krylov subspace methods can prove a robust and efficient solution accelerator, allowing for a fine tuning of the fill‐in degree with a significant improvement in both the solver performance and the memory consumption. The present paper develops two novel MIF variants for the solution of multi‐level symmetric positive definite systems. Two correction algorithms are proposed with the aim of preserving the positive definiteness of the preconditioner, thus avoiding possible breakdowns of the preconditioned conjugate gradient solver. The MIF variants are experimented with in the solution of both a single system and a long‐term quasi‐static simulation dealing with a multi‐level geomechanical application. The numerical results show that MIF typically outperforms by up to a factor 3 a more traditional algebraic preconditioner such as an incomplete Cholesky factorization with partial fill‐in. The advantage is emphasized in a long‐term simulation where the fine fill‐in tuning allowed for by MIF yields a significant improvement for the computer memory requirement as well. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A new triangular thin‐shell finite element formulation is presented, which employs only translational degrees of freedom. The formulation allows for large deformations, and it is based on the nonlinear Kirchhoff thin‐shell theory. A number of static and dynamic test problems are considered for which analytical or benchmark solutions exist. Comparisons between the predictions of the new model and these solutions show that the new model accurately reproduces complex nonlinear analytical solutions as well as solutions obtained using existing, more complex finite element formulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
An improvement of a new technique for modelling cracks in the finite element framework is presented. A standard displacement‐based approximation is enriched near a crack by incorporating both discontinuous fields and the near tip asymptotic fields through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号