首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biobased polymers produced from renewable and inexpensive natural resources, such as natural oils, have drawn considerable attention over the past decades, due to their low cost, ready availability, environmental compatibility, and their inherent biodegradability. In this study, the micro/nanotribological wear behavior of biopolymers with different crosslinking densities prepared from low saturated soybean oil (LSS) by cationic copolymerization with divinyl benzene and polystyrene are evaluated and compared. Microtribological measurements were performed using a ball-on-flat reciprocating microtribometer using two different probes −1.2 mm radius Si3N4 spherical probe and a 100 μm radius conical diamond probe with 90° cone angle. Nanoscale wear tests were performed using a DLC coated antimony (n) doped silicon probe of radius ∼200 nm in an atomic force microscope (AFM). Wear volumes were estimated from AFM topography maps of groove geometry and wear coefficients were evaluated for the materials. Elastic modulus and hardness information were evaluated using nanoindentation tests. Correlations between crosslinking density and observed wear behavior across scales are discussed. These results provide some insight into the wear behavior of soybean oil-based polymers.  相似文献   

2.
Friction and wear behaviour of self-mated chemical vapour deposited (CVD) diamond films coating silicon nitride ceramics (Si3N4) were investigated in ambient atmosphere. The tribological tests were conducted in a reciprocal motion ball-on-flat type tribometer under applied normal loads up to 80 N (∼10 GPa). Several characterisation techniques—including scanning electron microscopy (SEM), atomic force microscopy (AFM) and micro-Raman studies—were used in order to assess the quality, stress state and wear resistance of the coatings. In addition, a novel method is presented to estimate the wear coefficient of the diamond coated flat specimens from AFM and optical microscopy (OM) observations of the wear tracks.  相似文献   

3.
Atomic force microscopy (AFM) is a key instrument in nanotechnology; however, AFM probe wear is a critical concern with AFM-based technologies. In this work, the wear progression of silicon AFM probes with different radii was thoroughly explored under various normal forces and sliding speeds. The results showed that the initial wear coefficient increased as the normal force increased. However, after a certain sliding distance, the wear coefficient was stable due to the flattening of the probe even with increasing normal force. It was also observed that the wear coefficient decreased with increasing probe radius and the wear of the probe increased as the sliding speed increased. From the overall results, it was concluded that the contact pressure plays a significant role in wear progression and may be responsible for a lower wear coefficient even with increasing adhesion forces due to wear. The wear rate was found to have an exponential dependence on contact stress, as proposed in recent literatures.  相似文献   

4.
The mechanical as well as tribological characteristics of coating films as thin as a few nm become more crucial as applications in micro-systems grow. Especially, the amorphous carbon film has a potential to be used as a protective layer for micro-systems. In this work, quantitative evaluation of nano-indentation, scratching, and wear tests were performed on the 7nm thick amorphous carbon film using an Atomic Force Microscope (AFM). It was shown that AFM-based nano-indentation using a diamond coated tip can be feasibly utilized for mechanical characterization of ultra-thin films. Also, it was found that the critical load where the failure of the carbon film occurred was about 18μN by the ramp load scratch test. Finally, the wear experimental results showed that the quantitative wear rate of the carbon film ranged 10-9~10-8 mm3/N cycle. These experimental methods can be effectively utilized for a better understanding the mechanical and tribological characteristics at the nano-scale.  相似文献   

5.
Chung KH  Lee YH  Kim DE 《Ultramicroscopy》2005,102(2):161-171
The wear of an atomic force microscope (AFM) tip is one of the crucial issues in AFM as well as in other probe-based applications. In this work, wear tests under extremely low normal load using an AFM were conducted. Also, in order to understand the nature of silicon tip wear, the wear characteristics of crystal silicon and amorphous silicon oxide layer were investigated by a high-resolution transmission electron microscope (HRTEM). It was found that fracture of the tip readily occurred due to impact during the approach process. Experimental results showed that the impact should be below 0.1 nNs to avoid significant fracture of the tip. Also, it was observed that wear of the amorphous layer, formed at the end of the tip, occurred at the initial stage of the silicon tip damage process. Based on Archard's wear law, the wear coefficient of the amorphous layer was in the range of 0.009-0.014. As for the wear characteristics of the silicon tip, it was shown that wear occurred gradually under light normal load and the wear rate decreased with increase in the sliding distance. As for the wear mechanism of the silicon tip, oxidation wear was identified to be the most significant. It was shown that the degree of oxidation was higher under high normal load and in a nitrogen environment, oxidation of the silicon tip was reduced.  相似文献   

6.
Haochih Liu B  Chen CH 《Ultramicroscopy》2011,111(8):1124-1130
The in-use wear of atomic force microscopy (AFM) probe tips is crucial for the reliability of AFM measurements. Increase of tip size for several nanometers is difficult to monitor but it can already taint subsequent AFM data. We have developed a method to study the shape evolution of AFM probe tips in nanometer scale. This approach provides direct comparison of probe shape profiles, and thus can help in evaluation of the level of tip damage and quality of acquired AFM data. Consequently, the shape degradation of probes modified by hydrophobic alkylsilane self-assembled monolayers (SAMs) was studied. The tip wear length and wear volume were adopted to quantitatively verify the effectiveness of hydrophobic coatings. When compared with their silicon counterparts, probes modified by SAM materials exhibit superior wear-resistant behavior in tapping mode scans.  相似文献   

7.
Contamination control of atomic force microscope (AFM) tips (including standard but supersharp imaging tips and particle/colloidal probes) is very important for reliable AFM imaging and surface/interface force measurements. Traditional cleaning methods such as plasma, UV–ozone and solvent treatments have their shortcomings. Here, we demonstrate that calibration gratings with supersharp spikes can be employed to scrub away contaminants accumulated on a colloidal sphere probe by scanning the probe against the spikes at high load at constant-force mode. The present method is superior to traditional cleaning methods in several aspects. First, accumulated lump-like organic/inorganic material can be removed; second, removal is non-destructive and highly efficient based on a “targeted removal” strategy; third, removal and probe shape/morphology study can be completed in a single step (we report, to our best knowledge, the first evidence of the wear of the colloidal sphere during force measurements); and fourth, both colloidal/particle probes and standard but supersharp AFM imaging tips can be treated.  相似文献   

8.
Performance results of MEMS coated with a conformal DLC   总被引:4,自引:0,他引:4  
A MEMS electrostatic lateral output motor has been successfully coated with a diamond like carbon (DLC) coating to protect against wear. Experiments were performed to characterize coating chemistry and performance. Friction results from accelerated screening tests using a miniature, lightly loaded ball on flat tribometer showed that the DLC coating maintained low friction longer compared to uncoated silicon. DLC on DLC experiments showed the lowest friction, and those that were run in 30% RH showed a much longer lifetime than ones run in dry air. Uniformity of DLC coverage on MEMS was verified by Auger electron spectroscopy (AES), microRaman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Micrographs revealed that there is about a 3:1 ratio of DLC coating for a line of sight deposition region to a non line of sight deposition region. DLC coated MEMS outperformed uncoated MEMS by 16X in air and 300X in vacuum, albeit performance in vacuum was lower than in air. A very clear difference in wear debris was seen between devices run in air and in vacuum. Cylindrical rolls were dominant in the devices that were run in air and platelets were dominant on devices run in vacuum. Ultimately, the DLC coating was found to greatly improve performance over uncoated MEMS.  相似文献   

9.
The formation of nanoscopic ripple patterns on top of material surfaces has been reported for different materials and processes, such as sliding against polymers, high-force scanning in atomic force microscopy (AFM), and surface treatment by ion beam sputtering. In this work, we show that such periodic ripples can also be obtained in prolonged reciprocating sliding against nanocrystalline diamond (NCD) films. NCD films with a thickness of 0.8 µm were grown on top of silicon wafer substrates by hot-filament chemical vapor deposition using a mixture of methane and hydrogen. The chemical structure, surface morphology, and surface wear were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and AFM. The tribological properties of the NCD films were evaluated by reciprocating sliding tests against Al2O3, Si3N4, and ZrO2 counter balls. Independent of the counter body material, clear ripple patterns with typical heights of about 30 nm induced during the sliding test are observed by means of AFM and SEM on the NCD wear scar surfaces. Although the underlying mechanisms of ripple formation are not yet fully understood, these surface corrugations could be attributed to the different wear phenomena, including a stress-induced micro-fracture and plastic deformation, a surface smoothening, and a surface rehybridization from diamond bonding to an sp 2 configuration. The similarity between ripples observed in the present study and ripples reported after repeated AFM tip scanning indicates that ripple formation is a rather universal phenomenon occurring in moving tribological contacts of different materials.  相似文献   

10.
The use of thin film diamond as a hard tool coating offers a significant wear protection in numerous machining operations and increases considerably tool's lifetime. The extreme hardness of the diamond is especially needed in machining highly abrasive materials such as aluminum-silicon alloys. Tapping is widely used for thread fabrication and it is often a time consuming process causing a delay on an automated production line. This study investigated diamond coatings in thread cutting and the aim was to gain knowledge about the performance of diamond-coated taps. PVD diamond coatings were deposited using ultra short pulsed laser deposition (USPLD) techniques. Another type of nanodiamond coating was a chrome-nanodiamond (CND) coating deposited by a two-phase electrochemical process to produce a metal matrix with embedded detonation nanodiamond (DND) particles. The main points were the analysis of tool torques of the thread machining data, sticking of aluminum alloy and wear behavior and mechanism of tested tapping tools. The tested tools were analyzed by Scanning Electron Microscopy (SEM) regarding tool wear and sticking of aluminum on tool surface caused by mechanical interaction. Coating approaches turned out to provide 13–30% improvements in cutting and 37–51% improvements in reversing for overall mean torques compared to uncoated reference tools.  相似文献   

11.
In order to examine histological sections of the rat vomeronasal epithelium with the atomic force microscope (AFM), we developed an electron beam etching method that improves the resolution of AFM images. This method results in AFM images comparable to those obtained with the transmission electron microscope (TEM). Ultrathin tissue sections embedded in epoxy resin were observed before and after the treatment with electron beam radiation. Before electron beam treatment, epithelial structures such as the microvilli surface, dendritic processes, the supporting cell layers and the neuronal cell layers were all visible using the AFM. However, only a few subcellular structures could also be resolved. The AFM images were not as clear as those obtained with the TEM. After electron beam treatment, however, the resolution of AFM images was greatly improved. Most of the subcellular structures observed in TEM images, including the inner membrane of mitochondria, ciliary-structure precursor body, junctional complexes between the neurons and supporting cells, and individual microvilli were now visible in the AFM images. The electron beam treatment appeared to melt the embedding resin, bringing subcellular structures into high relief. The result of this study suggests that electron beam etching of histological samples may provide a new method for the study of subcellular structure using the AFM.  相似文献   

12.
In an attempt to improve the mechanical and thermal resilient properties of mild steel, Zn-ZrO2-SiC composite coating was fabricated from zinc-based sulphate electrolyte with incorporated composite particles of ZrO2/SiC at 2.0 A/cm2 for 10 min. The effects of particle on the mechanical properties were examined using scanning electron microscope attached with energy dispersion spectroscopy and atomic force microscopy. The micro-hardness and wear resistance behaviour were determined with high diamond micro-hardness tester and three body abrasive MTR-300 testers with dry sand rubber wheel apparatus with 5 N. The fabricated coating was thermally heated at 200 °C for 4 h to evaluate the coating stability. From the results, a modification in the microstructure and topographic orientation as a result of incorporated composite was noticed on the zinc matrix. The mechanical and thermal properties were observed to be considerably improved by the incorporation of the ZrO2/SiC weight fraction. A significant improvement in wear and hardness properties were also obtained for the multiphase embedded coatings.  相似文献   

13.
Sun WX  Shen ZX 《Ultramicroscopy》2003,94(3-4):237-244
The combination of near-field scanning optical microscopy and Raman spectroscopy provides chemical/structural specific information with nanometer spatial resolution, which are critically important for a wide range of applications, including the study of Si devices, nanodevices, quantum dots, single molecules of biological samples. In this paper, we describe our near-field Raman study using apertureless probes. Our system has two important features, critical to practical applications. (1) The near-field Raman enhancement was achieved by Ag coating of the metal probes, without any preparation of the sample, and (2) while all other apertureless near-field Raman systems were constructed in transmission mode, our system works in the reflection mode, making near-field Raman study a reality for any samples. We have obtained the first 1D Raman mapping of a real Si device with 1s exposure time. This is a very significant development in near-field scanning Raman microscopy as it is the first demonstration that this technique can be used for imaging purpose because of the short integration time. In addition, the metal tips used in our set-up can be utilized to make simultaneous AFM and electrical mappings such as resistance and capacitance that are critical parameters for device applications.  相似文献   

14.
This paper presents a technique for groove machining of potassium niobate nanosheets using an atomic force microscope (AFM). Groove machining operations are performed using super sharp silicon (SSS) probes. The tip radius of these probes is less than 5 nm and is one-third that of a conventional silicon (Si) probe. The results obtained using these probes are compared with those obtained using a Si probe, in order to examine the tip radius effects of the AFM probe on groove machining accuracy, i.e., coarseness of the machined groove. These results show that the degree of coarseness of the machined groove for varying machining loads with the SSS probe was much worse than that with the Si probe. Thus, groove machining with the SSS probe was more difficult to control with varying machining loads. We propose a groove fabrication model that considers the stochastic energy and difference in tip radius of the AFM probe. Using our groove fabrication model, changes in the coarseness of the machined groove for varying machining loads can be predicted.  相似文献   

15.
While image quality from instruments such as electron microscopes, light microscopes, and confocal laser scanning microscopes is mostly influenced by the alignment of optical train components, the atomic force microscope differs in that image quality is highly dependent upon a consumable component, the scanning probe. Although many types of scanning probes are commercially available, specific configurations and styles are generally recommended for specific applications. For instance, in our area of interest, tapping mode imaging of biological constituents in fluid, double ended, oxide-sharpened pyramidal silicon nitride probes are most often employed. These cantilevers contain four differently sized probes; thick- and thin-legged 100 microm long and thick- and thin-legged 200 microm long, with only one probe used per cantilever. In a recent investigation [Taatjes et al. (1997) Cell Biol. Int. 21:715-726], we used the scanning electron microscope to modify the oxide-sharpened pyramidal probe by creating an electron beam deposited tip with a higher aspect ratio than unmodified tips. Placing the probes in the scanning electron microscope for modification prompted us to begin to examine the probes for defects both before and after use with the atomic force microscope. The most frequently encountered defect was a mis-centered probe, or a probe hanging off the end of the cantilever. If we had difficulty imaging with a probe, we would examine the probe in the scanning electron microscope to determine if any defects were present, or if the tip had become contaminated during scanning. Moreover, we observed that electron beam deposited tips were blunted by the act of scanning a hard specimen, such as colloidal gold with the atomic force microscope. We also present a mathematical geometric model for deducing the interaction between an electron beam deposited tip and either a spherical or elliptical specimen. Examination of probes in the scanning electron microscope may assist in interpreting images generated by the atomic force microscope.  相似文献   

16.
A method to prepare the carbon nanotubes (CNTs)–Ni–P composite coating with different mass content of CNTs on the surface of 45# steel by electroless plating was proposed. The transmission electron microscopy (TEM) and the scanning electron microscopy (SEM) were used to observe the appearance of the as-prepared CNTs and the CNTs–Ni–P composite coating, and then the roughness of the coating surface was also analyzed by atomic force microscopy (AFM). Furthermore, the wear and friction behavior of the CNTs–Ni–P composite coating were investigated under oil-lubricated condition, Due to the self-lubrication property and the unique antifriction structure, CNTs can greatly improve the wear resistance of the CNTs–Ni–P composite coating, where the wear resistance of the CNTs–Ni–P composite coating is optimized with the intermediate mass content of 2 kg/m3 CNTs.  相似文献   

17.
钎焊气氛对金刚石钎焊性能的影响   总被引:2,自引:0,他引:2  
主要利用Cu-10Sn-5Ti钎料粉末,在空气、Ar气保护和真空气氛下分别对金刚石进行钎焊试验,通过扫描电子显微镜观测金刚石钎焊形貌、X射线衍射仪分析界面生成物成分、激光拉曼光谱仪检测金刚石石墨化程度、磨损试验分析金刚石破损形式等手段,考察研究不同钎焊气氛对金刚石钎焊性能的影响。试验结果表明,在空气中钎焊时,钎料粉末出现了一定的氧化,生成的氧化膜阻碍了界面反应的充分进行,对钎焊性能有一定的影响,金刚石也出现了较严重的热损伤,磨削过程中出现了少数部分颗粒脱落的情况;而在Ar气保护和真空钎焊时,钎料充分润湿和铺展,实现了对金刚石的高强度把持,金刚石石墨化程度很小,金刚石主要经历了完整、小块破碎、大块破损、磨平等正常磨损形式,金刚石利用率高。  相似文献   

18.
采用Kistler三向压电铣削测力仪测试了刀具切削45钢过程中的切削力,利用超景深显微镜、扫描电镜和能谱仪观察分析刀具切削后的磨痕宽度、形貌和成分,获得了未涂层刀具HSS、TiN和TiCN涂层刀具的切削时间与磨痕宽度关系图,探讨了刀具的切削失效机理。采用XRD分析了涂层刀具铣削前的相结构,结果表明:TiN与TiCN涂层均表现为fcc-TiN相结构,TiCN具有明显的(111)择优取向,TiN择优取向不明显。切削试验表明:在磨痕宽度达到0.3mm时,TiCN涂层刀具的切削时间比TiN涂层刀具切削时间约长2.5倍,同时整个切削过程中TiCN比TiN具有更低的切削力。这可能是因为TiCN涂层比TiN涂层具有更高的硬度和耐磨性,并且切削过程中TiCN涂层中固溶的C能析出至晶界处,起到润滑作用,降低刀具与工件材料之间的摩擦,减小切削力,延长刀具使用寿命。SEM和EDS分析表明:TiN涂层刀具磨损失效机理为磨料磨损和粘着磨损,而TiCN涂层刀具失效以磨料磨损为主。  相似文献   

19.
Many relevant questions in biology and medicine require both topography and chemical information with high spatial resolution. Several biological events that occur at the nanometer scale level need to be investigated in physiological conditions. In this regard Atomic Force Microscopy (AFM) is one of the most powerful tools for label‐free nanoscale characterization of biological samples in liquid environment. Recently, the coupling of Raman spectroscopy to scanning probe microscopies has opened new perspectives on this subject; however, the coupling of quality AFM spectroscopy with Raman spectroscopy in the same probe is not trivial. In this work we report about the AFM capabilities of an advanced high‐resolution probe that has been previously nanofabricated by our group for coupling with Raman spectroscopy applications. We investigate its use for liquid AFM measurements on biological model samples like lipid bilayers, amyloid fibrils, and titin proteins. We demonstrate topography resolution down to nanometer level, force measurement and stable imaging capability. We also discuss about its potential as nanoscale chemical probe in liquid phase. Microsc. Res. Tech., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
氮化碳因预言具有超金刚石硬度、高热稳定性及优异的摩擦磨损性能,在刀具涂层的应用领域具有巨大的潜力,引起了世界上科研工作者的广泛关注。本文以CF4+N2+H2+Ar为反应气体,通过直流等离子体喷射法(DC Plasma Jet CVD),在Si[100]基底上以金刚石薄膜为过渡层,成功制备了氮化碳涂层。利用扫描隧道显微镜(SEM)、原子力显微镜(AFM)、拉曼光谱(Raman)等现代理化测试手段,对所制备涂层的表面形貌、成分结构进行了表征和分析。研究结果表明:所制备的涂层中金刚石过渡层表面生长了线度约300-600nm的C3N4晶粒,为亚微米级别,晶形较为清晰,呈现不规整的柱状,样品中主要含有α-C3N4与β-C3N4,涂层中N的含量为9.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号