首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that the singular-value decomposition (SVD) of the sampled amplitude response of a two-dimensional (2-D) digital filter possesses a special structure: every singular vector is either mirror-image symmetric or antisymmetric with respect to its midpoint. Consequently, the SVD can be applied along with 1-D finite impulse response (FIR) techniques for the design of linear-phase 2-D filters with arbitrary prescribed amplitude responses which are symmetrical with respect to the origin of the (ωΨω2) plane. The balanced approximation method is applied to linear-phase 2-D FIR filters of the type that may be obtained by using the SVD method. The method leads to economical and computationally efficient filters, usually infinite impulse response filters, which have prescribed amplitude responses and whose phase responses are approximately linear  相似文献   

2.
In this paper we present a new and numerically efficient technique for designing 2-D linear phase octagonally symmetric digital filters using Schur decomposition method (SDM) and the diagonal symmetry of the 2-D impulse response specifications. This technique is based on two steps. First, the 2-D impulse response matrix is decomposed into a parallel realization of k sections, each comprising two cascaded linear phase SISO 1-D FIR digital filters. It is shown that using the symmetry property of the 2-D impulse response matrix and the fact that the left and right eigenspaces obtained by SDM are transpose of each other, the design problem of two 1-D digital filters is reduced to the design problem of only one 1-D digital filter in each section.  相似文献   

3.
Global Christoffel–Darboux formula for different polynomials has already been used for the filter design. Here, this formula for orthonormal Chebyshev polynomials of the second kind and for two independent variables is applied in generating novel class linear-phase two-dimensional (2-D) finite impulse response (FIR) digital filter functions. In this way, 2-D filters with some specific features including economy, phase linearity, symmetry and selectivity are designed. Representative examples of the 2-D FIR digital filters of a new class obtained by the proposed approximation technique are given. A filter generated by the proposed approach is compared with the corresponding one generated by the procedure from literature.  相似文献   

4.
A new method for designing linear-phase finite impulse response (FIR) filters is proposed by using the blockwise waveform moments. The proposed method yields linear-phase FIR filters whose magnitude response and its derivatives to a certain order take the prescribed values at equally spaced frequency points. The design procedure only needs to solve a system of linear equations, whose size is slightly smaller than the degree of the resulting filter. In addition, the inversion of the linear equations can be essentially precomputed. Therefore, the proposed design method is computationally efficient. In particular, for some important cases, i.e., the maximally flat R-regular L/sup th/-band FIR filters, a closed-form formula can be obtained. It is also shown that the resulting R-regular L/sup th/-band FIR filters have the zero intersymbol interference property.  相似文献   

5.
A method is presented for decomposing even-order linear-phase FIR filters with distinct roots into the cascade connection of second-and fourth-order subfilters. The technique consists of of finding roots of the z-domain filter transfer function by searching a finite region in the complex z plane. Due to symmetry in the impulse response, only the perimeter (the real axis and boundary) and interior of the upper half of the unit circle need to be searched for real and complex values of roots from which the impulse response coefficients of the corresponding subfilters can be directly determined. The root-finding algorithm tests for existence of a root at each interval in a finite grid and then utilizes the Newton-Raphson method to refine the final estimate of each root value. In the two-dimensional (2-D) search, the Cauchy-Riemann relations are exploited to reduce computations and speed convergence. This method has been tested on FIR filters with orders ranging to over 120 and has proven effective in decomposing filters to the cascade realization with identical frequency response characteristics. An example is presented that illustrates the use of this technique  相似文献   

6.
A unified treatment of approximation and realization of type-3 finite impulse response (FIR) linear-phase Hilbert transformers is presented. A simple method based on Bernstein polynomials and half-band filters is proposed to derive the transfer function of the system, and a triangular array realization based on the de Casteljau algorithm is developed from the Bernstein form of the transfer function. It is shown that the array structure, consisting of multiplierless identical modules, can be realized hierarchically using complex and real signal processing techniques  相似文献   

7.
The realization of 2-D digital filters based on the lower-upper triangular decomposition of the coefficient matrix is investigated. A numerical method based on the QA decomposition, which has some important characteristics, is proposed for reaching the LU structure. The coefficients in the final LU structure have values favorable to fixed-point arithmetic implementation. Furthermore, the QR structure can be used for the realization and possesses good numerical characteristics in terms of the approximate decomposition scheme. The symmetry in the impulse response coefficient matrix of an octagonally symmetric 2-D FIR filter is utilized to reduce the computational effort spent in the decomposition and the total number of multipliers in the final realization structure  相似文献   

8.
A new derivation is presented for the least squares solution of the design problem of two-dimensional (2-D) finite impulse response (FIR) filters by minimizing the Frobenius norm of the difference between the matrices of the ideal and actual frequency responses sampled at the points of a frequency grid. The mathematical approach is based on the singular value decomposition (SVD) of two complex transformation matrices. Interestingly, the designed filter is proved to be zero-phase if the ideal filter is so without assuming any kind of symmetry  相似文献   

9.
Classes of linear-phase finite-impulse response (FIR) filters with a piecewise-polynomial impulse response are proposed for the four types of linear-phase FIR filters. In addition, very efficient recursive structures to implement these filters in a straightforward and consistent manner are proposed. The desired impulse response is created by using a parallel connection of several filter branches. Only one branch has an impulse response of the full filter length, whereas the impulse responses are shorter for the remaining branches but the center is at the same location. The arithmetic complexity of these filters is proportional to the number of branches and the common polynomial order for each branch, rather than the actual filter order. In order to generate the overall piecewise-polynomial impulse response the polynomial coefficients are found, with the aid of linear programming, by optimizing the responses in the minimax sense, for both narrowband conventional filters and narrowband differentiators. The generation of these structures is based on the use of accumulators so that after using an accumulator, the resulting impulse response is divided into two parts. The first part follows the desired polynomial form, and the second part is what is left after the division, i.e., the nonpolynomial part. This same procedure can be used for all the following accumulators. Several examples are included, illustrating the benefits of the proposed filters, in terms of a reduced number of unknowns used in the optimization and the reduced number of multipliers required in the actual implementation.  相似文献   

10.
This paper introduces two classes of frequency-response masking (FRM) linear-phase finite (length) impulse response (FIR) filters for interpolation and decimation by arbitrary integer factors M. As they are based on the FRM approach, the proposed filters are low-complexity (efficient) sharp-transition linear-phase FIR interpolation and decimation filters. Compared to previously existing FRM linear-phase FIR filter classes for interpolation and decimation, the new ones offer lower complexity and more freedom in selecting the locations of the passband and stopband edges. Furthermore, the proposed classes of FRM filters can, as special cases, realize efficient Mth-band FRM linear-phase FIR interpolation and decimation filters for all values of M. Previously, only half-band (M = 2) FRM linear-phase FIR filters have appeared in the literature. The paper includes design techniques suitable for the new filters and design examples illustrating their efficiency.  相似文献   

11.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

12.
An FIR filter can usually be realized in the direct form or in cascade form. The Chebyshev-type structures, known for the 2-D FIR filter implementation, are generalized to the realization of arbitrary 1-D causal FIR filters. The new realizations show several attractive properties and can be implemented using modular pipelineable processor arrays  相似文献   

13.
A method is presented to synthesize wideband linear-phase finite-impulse-response (FIR) filters with a piecewise-polynomial-sinusoidal impulse response. The method is based on merging the earlier synthesis scheme proposed by the authors to design piecewise-polynomial filters with the method proposed by Chu and Burrus. The method uses an arbitrary number of separately generated center coefficients instead of only one or none as used in the method by Chu–Burrus. The desired impulse response is created by using a parallel connection of several filter branches and by adding an arbitrary number of center coefficients to form it. This method is especially effective for designing Hilbert transformers by using Type 4 linear-phase FIR filters, where only real-valued multipliers are needed in the implementation. The arithmetic complexity is proportional to the number of branches, the common polynomial order for each branch, and the number of separate center coefficients. For other linear-phase FIR filter types the arithmetic complexity depends additionally on the number of complex multipliers. Examples are given to illustrate the benefits of this method compared to the frequency-response masking (FRM) technique with regard to reducing the number of coefficients as well as arithmetic complexity.  相似文献   

14.
该文提出了一种用神经网络算法来设计二维线性相位数字滤波器的新方法。通过分析二维FIR线性相位滤波器的幅频响应特性,建立了神经网络算法。根据给定的幅频响应指标,按该算法可获得滤波器系数。为保证该算法的稳定性,提出并证明了该算法的收敛定理。文中给出了圆对称和矩形对称二维低通线性相位FIR数字滤波器优化设计实例。计算机仿真结果表明由该方法设计的二维数字滤波器,通带和阻带范围波动小,所需计算量非常少,稳定性强,因而是一种优异的设计方法。  相似文献   

15.
This work addresses the design of LoG filters in the frequency domain within a structure formed by the cascade of quasi-Gaussian and discrete Laplacian filters. The main feature of such a structure is that it requires half the number of convolutions of the classical structure in which the LoG transfer function is expressed as the sum of two separable transfer functions of 1-D Gaussian and LoG type. Such a perspective allows one to rephrase the design of IIR and FIR filters for edge detection as a frequency domain approximation problem solvable by standard digital filter design tools. The zero-phase IIR solutions have a good performance at low orders and approximation errors practically independent of the aperture parameter. The characteristics of the nearly linear-phase IIR filters solving the problem suggest the consideration of linear-phase FIR filters with zeros constrained on the unit circle. The use of such filters leads to remarkable computational savings with respect to the filters designed by impulse response sampling. The agreement between the edge values obtained by the filters designed according to the scheme proposed in this work and those obtained by standard techniques is very good.Work carried out with the financial support of the C.N.R.-Progetto Finalizzato Robotica, contract no. 91.01942.PF67.  相似文献   

16.
In this brief, we derive conditions on the polyphase matrix of 2-D finite-impulse response (FIR) quincunx filter banks, for the filters in the filter bank to have quadrantal or diagonal symmetry. These conditions provide a framework for synthesizing polyphase structures which structurally enforce the symmetry. This is demonstrated by constructing examples of small parameterized matrix structures which satisfy the above conditions, thus giving perfect reconstruction FIR quincunx filter banks with quadrantal or diagonally symmetric short-kernel (i.e., short-support) filters. It is also shown that cascades of the above constructed small structures can be used to construct filters of higher order.  相似文献   

17.
This work presents close-form formulas for typical two-dimensional bandselect linear-phase FIR filters (e.g., band-pass, high-pass, and band-stop filters) optimal in the least-squares sense. Cases of both circular and elliptical symmetry are considered. The formulas refer to the coefficients of the frequency sampling form of the frequency response. Therefore they can either be directly used for filter implementation, if the frequency sampling structure is adopted, or used to obtain the impulse response coefficients via an inverse FFT.This work was partially supported by CNR-Progetto Finalizzato Robotica under Contract No. 89.00534.67.  相似文献   

18.
This paper introduces a novel nonlinear filtering structure: the linear combination of weighted medians (LCWM). The proposed filtering scheme is modeled on the structure and design procedure of the linear-phase FIR highpass (HP) filter in that the linear-phase FIR HP filter can be obtained by changing the sign of the filter coefficients of the FIR lowpass (LP) filter in the odd positions. The HP filter can be represented as the difference between two LP subfilters that have all positive coefficients. This representation of the FIR HP filter is analogous to the difference of estimates (DoE) such as the difference of medians (DoM). The DoM is essentially a nonlinear HP filter that is commonly used in edge detection. Based on this observation, we introduce a class of LCWM filters whose output is given by a linear combination of weighted medians of the input sequence. We propose a method of designing the 1-D and 2-D LCWM filters satisfying required frequency specifications. The proposed method adopts a transformation from the FIR filter to the LCWM filter. We show that the proposed LCWM filter can offer various frequency filtering characteristics including “LP,” “bandpass (BP),” and “HP” responses  相似文献   

19.
A closed form solution for the approximation of a linear-phase FIR (finite impulse response) filter with equiripple magnitude responsein the passband and stopband was not known. In this letter we present a closed form solution of some equiripple linear-phase half-band FIR filter approximation.  相似文献   

20.
This paper introduces a generalized design method for polynomial-based interpolation filters. These filters can be implemented by using a modified Farrow structure, where the fixed finite impulse response (FIR) sub-filters possess either symmetrical or anti-symmetrical impulse responses. In the proposed approach, the piecewise polynomial impulse response of the interpolation filter is optimized directly in the frequency domain using either the minimax or least mean square criterion subject to the given time domain constraints. The length of the impulse response and the degree of the approximating polynomial in polynomial intervals can be arbitrarily selected. The optimization in the frequency domain makes the proposed design scheme more suitable for various digital signal processing applications and enables one to synthesize interpolation filters for arbitrary desired and weighting functions. Most importantly, the interpolation filters can be optimized in a manner similar to that of conventional linear-phase FIR filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号