首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
InN nanowires, grown by plasma-enhanced molecular beam epitaxy, were investigated by means of magnetotransport. By performing temperature-dependent transport measurements and current measurements on a large number of nanowires of different dimensions, it is proven that the carrier transport mainly takes place in a tube-like surface electron gas. Measurements on three representative nanowires under an axially oriented magnetic field revealed pronounced magnetoconductance oscillations with a periodicity corresponding to a single magnetic flux quantum. The periodicity is explained by the effect of the magnetic flux penetrating the coherent circular quantum states in the InN nanowires, rather than by Aharonov-Bohm type interferences. The occurrence of the single magnetic flux quantum periodicity is attributed to the magnetic flux dependence of phase-coherent circular states with different angular momentum quantum numbers forming the one-dimensional transport channels. These phase coherent states can exist because of the almost ideal crystalline properties of the InN nanowires prepared by self-assembled growth.  相似文献   

2.
Chen RS  Yang TH  Chen HY  Chen LC  Chen KH  Yang YJ  Su CH  Lin CR 《Nanotechnology》2011,22(42):425702
The photoconduction (PC) mechanism in indium nitride (InN) nanowires (NWs) has been investigated via environment-, temperature-, and power-dependent measurements. The adsorbed oxygen-induced modulation of the surface state is proposed to be the leading factor in the long lifetime or high gain transport and in sensitizing photocurrent generation in the InN NWs. The electron trapping effect by adsorbed oxygen can be verified by the increased activation energy from 33 ± 4 (in vacuum) to 58 ± 2 meV (in oxygen). The observed supralinear power dependence of photocurrent also suggests the presence of acceptor states that influence the carrier recombination behavior and compensate the thermal carriers in the InN NWs. The potential influence of native oxide on the molecule-sensitive PC in this nitride nanomaterial is also inferred.  相似文献   

3.
4.
Koley G  Cai Z  Quddus EB  Liu J  Qazi M  Webb RA 《Nanotechnology》2011,22(29):295701
Diameter-dependent electrical properties of InN nanowires (NWs) grown by chemical vapor deposition have been investigated. The NWs exhibited interesting properties of coplanar deflection at specific angles, either spontaneously, or when induced by other NWs or lithographically patterned barriers. InN NW-based back-gated field effect transistors (FETs) showed excellent gate control and drain current saturation behaviors. Both NW conductance and carrier mobility calculated from the FET characteristics were found to increase regularly with a decrease in NW diameter. The observed mobility and conductivity variations have been modeled by considering NW surface and core conduction paths.  相似文献   

5.
In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.  相似文献   

6.
Research interest in InN has intensified in recent years because of its unique material properties and promising applications in electronic and photonic devices. Measurements on InN nanowires presented by Chang et al., [J. Electron. Mater. 35, 738 (2006)] showed an anomalous resistance behavior in InN nanowires with diameters less than 90 nm. We examine possible theories presented in literature to explain this intriguing observation. We propose that the presence of a high density electron accumulation layer at the surface of thin InN nanowires is the most probable cause for the uncharacteristic relationship between the total measured resistance and the ratio of length-to-area. High density surface electron accumulation layer, characteristic of InN films and nanowire, promotes a surface conduction path distinct from the bulk conduction. For large diameter nanowires, bulk conduction is likely to be the dominant mechanism while surface conduction is proposed to play a major role for small diameter InN nanowires.  相似文献   

7.
The influence of the growth parameters on the photoluminescence (PL) spectra has been investigated for samples with columnar morphology, either with InN columns on original substrates or as free-standing nanowires. Valuable information about band gap and electron concentration was obtained by line shape analysis. Optical band gaps between 730 and 750 meV and electron concentrations of 8 x 10(17) to 6 x 10(18) cm(-3) were derived from the fit of the PL spectra of different samples. The crystalline quality of the wires was investigated by high-resolution transmission electron microscopy.  相似文献   

8.
A brief review is given of recent developments in wide bandgap semiconductor nanowire synthesis and devices fabricated on these nanostructures. There is strong interest in these devices for applications in UV detection, gas sensors and transparent electronics.  相似文献   

9.
Tuning the surface charge properties of epitaxial InN nanowires   总被引:1,自引:0,他引:1  
Zhao S  Fathololoumi S  Bevan KH  Liu DP  Kibria MG  Li Q  Wang GT  Guo H  Mi Z 《Nano letters》2012,12(6):2877-2882
We have investigated the correlated surface electronic and optical properties of [0001]-oriented epitaxial InN nanowires grown directly on silicon. By dramatically improving the epitaxial growth process, we have achieved, for the first time, intrinsic InN both within the bulk and at nonpolar InN surfaces. The near-surface Fermi-level was measured to be ~0.55 eV above the valence band maximum for undoped InN nanowires, suggesting the absence of surface electron accumulation and Fermi-level pinning. This result is in direct contrast to the problematic degenerate two-dimensional electron gas universally observed on grown surfaces of n-type degenerate InN. We have further demonstrated that the surface charge properties of InN nanowires, including the formation of two-dimensional electron gas and the optical emission characteristics can be precisely tuned through controlled n-type doping. At relatively high doping levels in this study, the near-surface Fermi-level was found to be pinned at ~0.95-1.3 eV above the valence band maximum. Through these trends, well captured by the effective mass and ab initio materials modeling, we have unambiguously identified the definitive role of surface doping in tuning the surface charge properties of InN.  相似文献   

10.
Bonini N  Garg J  Marzari N 《Nano letters》2012,12(6):2673-2678
We use first-principles methods based on density functional perturbation theory to characterize the lifetimes of the acoustic phonon modes and their consequences on the thermal transport properties of graphene. We show that using a standard perturbative approach, the transverse and longitudinal acoustic phonons in free-standing graphene display finite lifetimes in the long-wavelength limit, making them ill-defined as elementary excitations in samples of dimensions larger than ~1 μm. This behavior is entirely due to the presence of the quadratic dispersions for the out-of-plane phonon (ZA) flexural modes that appear in free-standing low-dimensional systems. Mechanical strain lifts this anomaly, and all phonons remain well-defined at any wavelength. Thermal transport is dominated by ZA modes, and the thermal conductivity is predicted to diverge with system size for any amount of strain. These findings highlight strain and sample size as key parameters in characterizing or engineering heat transport in graphene.  相似文献   

11.
High quality, well-separated, homogeneous sizes and high aspect ratio Si-doped InN nanowires (NWs) were grown by catalyst-free molecular beam epitaxy (MBE) after optimization of the growth conditions. To this end, statistical analysis of NW density and size distribution was performed. The high crystal quality and smooth NW surfaces were observed by high resolution transmission electron microscopy. Spectral photoluminescence has shown the increase of the band filling effect with Si flux, indicating successful n-type doping. A Raman LO scattering mode appears with a pronounced low energy tail, also reported for highly doped InN films.  相似文献   

12.
Lee S  Lee W  Seo K  Kim J  Han SH  Kim B 《Nanotechnology》2008,19(41):415202
Nanodevices using individual indium nitride nanowires are fabricated by e-beam lithography. The nanowires have diameters of 40-80?nm, lengths up to several tens of micrometres and single-crystalline nature. We observed ohmic I-V behaviour of InN nanowires above nearly 100?K, which is consistent with the pinning Fermi level of the metal electrode near the conduction band edge of InN nanowire. At low temperatures, the device shows typical semiconductor behaviour along with a quantum tunnelling effect through the Schottky barrier rather than thermally activated transport. The activation energy calculated above and below 80?K is 28.2 and 5.08?meV, respectively. We have also fabricated a photocurrent generation device using InN nanowires. The photocurrent of an acceptor-sensitizer dyad with di-(3-aminopropyl)-viologen (DAPV) and a Ru complex on an InN nanowires/ITO plate was 8.3?nA?cm(-2), which increased by 62.7% compared to that without InN nanowire layers.  相似文献   

13.
Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.  相似文献   

14.
Thermal conductivity of thin silicon nanowires (1.4-8.3 nm) including the realistic crystalline structures and surface reconstruction effects is investigated using direct molecular dynamics simulations with Stillinger-Weber potential for Si-Si interactions. Thermal conductivity as a function of decreasing nanowire diameter shows an expected decrease due to increased surface scattering effects. However, at very small diameter (<1.5 nm), an increase in the thermal conductivity is observed, which is explained by the phonon confinement effect.  相似文献   

15.
Phonons in low-dimensional structures with feature sizes on the order of the phonon wavelength may be coherently scattered by the boundary. This may give rise to a new regime of heat conduction, which can impact thermal energy transport and conversion. Traditional methods used to investigate phonon transport in one-dimensional structures suffer from uncertainty due to contact resistance, defects, and limited control over sample dimensions. We have developed a new batch-fabrication technique for suspended microdevices with integrated silicon nanowires from silicon-on-insulator (SOI) wafers. The nanowires are defect-free and have extremely high aspect ratios (length/critical dimension >2000). The nanowire dimensions (length and critical dimension) can be precisely controlled during fabrication. With these novel devices, phonon transport in silicon nanowires is systematically investigated. The room temperature thermal conductivity of nanowires with critical width around 80 nm is about 20 W/(m K) and much lower than that in smooth VLS wires. This suggests that the surface morphology of the structures has a significant effect on the thermal conductivity, but this phenomenon is not currently understood. This fabrication technique can also be used for thermal transport investigation in a wide-range of low-dimensional structures.  相似文献   

16.
Heterostructure core-shell semiconductor nanowires (NWs) have attracted tremendous interest recently due to their remarkable properties and potential applications as building blocks for nanodevices. Among their unique traits, thermal properties would play a significant role in thermal management of future heterostructure NW-based nanoelectronics, nanophotonics, and energy conversion devices, yet have been explored much less than others. Similar to their electronic counterparts, phonon spectrum and thermal transport properties could be modified by confinement effects and the acoustic mismatch at the core-shell interface in small diameter NWs (<20 nm). However, fundamental thermal measurement on thin core shell NWs has been challenging due to their small size and their expected low thermal conductivity (κ). Herein, we have developed an experimental technique with drastically improved sensitivity capable of measuring thermal conductance values down to ~10 pW/K. Thermal conductivities of Ge and Ge-Si core-shell NWs with diameters less than 20 nm have been measured. Comparing the experimental data with Boltzmann transport models reveals that thermal conductivities of the sub-20 nm diameter NWs are further suppressed by the phonon confinement effect beyond the diffusive boundary scattering limit. Interestingly, core-shell NWs exhibit different temperature dependence in κ and show a lower κ from 300 to 388 K compared to Ge NWs, indicating the important effect of the core-shell interface on phonon transport, consistent with recent molecular dynamics studies. Our results could open up applications of Ge-Si core shell NWs for nanostructured thermoelectrics, as well as a new realm of tuning thermal conductivity by "phononic engineering".  相似文献   

17.
We introduce simple approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires. The analytical model is in excellent agreement with the detailed numerical calculations based on the solution of the elastic wave equation and is also in good agreement with the ballistic thermal conductance data by Schwab et al. (Nature 2000, 404, 974). Finally, we propose a demarcating criterion in terms of temperature, dimension, and material properties to capture the dimensional crossover from a three-dimensional (3D) bulk system to a one-dimensional (1D) system.  相似文献   

18.
The surface band diagram of InN and band structure of the InN/GaN interface were studied using ultraviolet photoemissive yield spectroscopy and X-ray photoemission spectroscopy (XPS). The surface work function and the difference between the Fermi level and the conduction band minimum of InN were determined by ultraviolet photoemissive yield measurement. The band offsets and surface band bending were determined using XPS. Both spectra proposed downward band bending of the InN surface. Moreover, the Schottky barrier height (SBH) of the InN/GaN interface is determined (1.5 eV). Comparison of the measured SBH with our previous results by electrical measurement is discussed. The physical quantities derived in this work provide important information for use in future studies of InN and InN/GaN heterostructures.  相似文献   

19.
Gallium arsenide nanowires were synthesized by gallium-assisted molecular beam epitaxy. By varying the growth time, nanowires with diameters ranging from 30 to 160?nm were obtained. Raman spectra of the nanowire ensembles were measured. The small linewidth of the optical phonon modes agree with an excellent crystalline quality. A surface phonon mode was also revealed, as a shoulder at lower frequencies of the longitudinal optical mode. In agreement with the theory, the surface mode shifts to lower wavenumbers when the diameter of the nanowires is decreased or the environment dielectric constant increased.  相似文献   

20.
《Optical Materials》2010,32(12):1857-1859
The carrier cooling and the carrier relaxation of an InN thin film illuminated with two excitation energies of 1.53 and 3.06 eV were studied by an ultrafast time-resolved photoluminescence upconversion apparatus. The hot phonon effect could be accounted for longer effective phonon emission times as compared to the theoretical prediction. The rise time and the LO phonon emission time for 3.06 eV excitation were much smaller than those for 1.53 eV excitation. These differences were attributed to the intervalley scattering between the Γ1 and Γ3 valleys in InN when carriers were excited with the energy of 3.06 eV. The intervalley scattering times of 250 fs and 2 ps were estimated for the intervalley scattering from the Γ1 to Γ3 valley and the reversed scattering process, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号