首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.  相似文献   

2.
Organic acid salts including sodium lactate, sodium diacetate, potassium benzoate, potassium sorbate, and their combinations were assessed as potential inhibitors of Listeria monocytogenes growth on frankfurters. Predictive models for L. monocytogenes growth on frankfurters treated with these salts were compared to select a proper L. monocytogenes growth curve model under these conditions. Sigmoidal equations, including logistic and Gompertz equations, are widely used to describe bacterial growth. In this study, the reparameterized Gompertz model provided a better fit to the L. monocytogenes growth data compared with the other models that were included in this study. Rather than a fixed value for the maximum number of organisms, the reparameterized Gompertz model allows this quantity to be estimated from the data to determine the effect, if any, of the treatments on maximum population density. This information is expected to improve practical methodology for hazard characterization of microbial pathogens on ready-to-eat meat products.  相似文献   

3.
The effect of micro-architectural structure of cabbage (Brassica oleracea var. capitata L.) substratum and or background bacterial flora on the growth of Listeria monocytogenes as a function of incubation temperature was investigated. A cocktail mixture of Pseudomonas fluorescens, Pantoea agglomerans and Lactobacillus plantarum was constituted to a population density of approximately 5 log CFU/ml in order to pseudo-simulate background bacterial flora of fresh-cut cabbage. This mixture was co-inoculated with L. monocytogenes (approximately 3 log CFU/ml) on fresh-cut cabbage or in autoclaved cabbage juice followed by incubation at different temperatures (4-30 degrees C). Data on growth of L. monocytogenes were fitted to the primary growth model of Baranyi in order to generate the growth kinetic parameters of the pathogen. During storage, microbial ecology was dominated by P. fluorescens and L. plantarum at refrigeration and abuse temperature, respectively. At all temperatures investigated, lag duration (lambda, h), maximum specific growth rate (micro(max), h(-1)) and maximum population density (MPD, log CFU/ml) of L. monocytogenes were only affected by medium micro-architectural structure, except at 4 degrees C where it had no effect on the micro(max) of the pathogen. Comparison of observed values of micro(max) with those obtained from the Pathogen Modelling Program (PMP), showed that PMP overestimated the growth rate of L. monocytogenes on fresh-cut cabbage and in cabbage juice, respectively. Temperature dependency of micro(max) of L. monocytogenes, according to the models of Ratkowsky and Arrhenius, showed linearity for temperature range of 4-15 degrees C, discontinuities and linearity again for temperature range of 20-30 degrees C. The results of this experiment have shown that the constituted background bacterial flora had no effect on the growth of L. monocytogenes and that micro-architectural structure of the vegetable was the primary factor that limited the applicability of PMP model for predicting the growth of L. monocytogenes on fresh-cut cabbage. A major limitation of this study however is that nutrient profile of the autoclaved cabbage juice may be different from that of the raw juice thus compromising realistic comparison of the behaviour of L. monocytogenes as affected by micro-architectural structure.  相似文献   

4.
The presence of the foodborne pathogen Listeria monocytogenes on cold-smoked salmon is a major concern for the seafood industry. Understanding processing and postprocessing handling factors that affect the ability of this pathogen to grow on cold-smoked salmon is critical for developing effective control strategies. In this study, we investigated the effect of curing method and freeze-thawing of cold-smoked salmon on (i) physicochemical properties and (ii) subsequent growth of genetically diverse strains of L. monocytogenes (inoculated after freeze-thawing) and endogenous lactic acid bacteria. The majority of the measured physicochemical properties were unaffected by freezing and thawing. Overall, wet-cured cold-smoked salmon had higher pH, water activity, and moisture, as well as lower fat, water-phase salt, and phenolic content compared with dry-cured cold-smoked salmon. The curing method and freeze-thawing did not affect growth of endogenous lactic acid bacteria. Freeze-thawing cold-smoked salmon prior to inoculation led to pronounced growth of L. monocytogenes at 7°C. The increase in cell density between days 0 and 30 was significantly (P = 0.0078) greater for cold-smoked salmon that was frozen and thawed prior to inoculation compared with nonfrozen cold-smoked salmon. On dry-cured, freeze-thawed cold-smoked salmon, L. monocytogenes had a lag phase ranging from 3.7 ± 0.1 to 11.2 ± 1.4 days compared with salmon that was wet cured and freeze-thawed, on which L. monocytogenes began to grow within 24 h. Variation in growth among L. monocytogenes strains was also observed, indicating the significance of assessing multiple strains. Further efforts to understand the impact of processing and postprocessing handling steps of cold-smoked salmon on the growth of genetically diverse L. monocytogenes will contribute to improved challenge study designs and data. This, in turn, will likely lead to more reliable and unbiased risk assessments and control measures.  相似文献   

5.
构建生鲜猪肉中单增李斯特菌的动态生长预测模型。猪肉样品接种由3 株单增李斯特菌制备的混合菌液,并置于3 组波动温度(1~45 ℃)条件下培养,采用一步法对获得的生长数据进行分析,构建并比较由初级模型(Baranyi或Two-compartment模型)与二级模型(Cardinal模型)集成的组合模型。结果表明,Baranyi-Cardinal和Two-compartment-Cardinal模型均适合用于描述猪肉中单增李斯特菌的生长,由两者估计的猪肉样品中单增李斯特菌最低、最适、最高生长温度分别为0.94、38.37、45.36 ℃和1.03、37.96、45.58 ℃,最适生长速率分别为0.891 h-1和0.858 h-1,最大生长浓度分别为9.07(lg(CFU/g))和9.09(lg(CFU/g));通过另设的4 组动态生长实验和3 组等温(4、20、37 ℃)生长实验对模型进行验证,分析表明,模型可以准确预测动态及等温条件下的单增李斯特菌的生长,预测曲线的均方根误差介于0.13~0.48 (lg(CFU/g)),残差服从均值为-0.02 (lg(CFU/g))、标准差为0.29(lg(CFU/g))的正态分布。最后,基于构建的模型开展生鲜猪肉家庭冰箱冷藏过程中单增李斯特菌的生长数值模拟,以证明模型潜在的应用性。本研究结果可用于猪肉中单增李斯特菌的生长预测及风险评估。  相似文献   

6.
Obtaining quantitative data concerning the relative impact of various factors that may influence bacterial growth is of great importance for microbial risk assessment and predictive microbiology. The objective of this work was to investigate the effect of the initial Listeria monocytogenes density on all the growth parameters of this pathogen (lag phase duration, growth rate and maximum population density attained) on a sterile solid model system mimicking smoked fishery products, and in real cold-smoked salmon, a product likely to be contaminated with L. monocytogenes. Growth of the pathogen was monitored using a sensitive enumeration method, recently developed, based on membrane filtration followed by the transfer of the filter on a selective media [Gnanou Besse, N., Audinet, N., Beaufort, A., Colin, P., Cornu, M. and Lombard, B., 2004. A contribution to the improvement of Listeria monocytogenes enumeration in smoked salmon. International Journal of Food Microbiology, 91, 119-127.]. Depending on the experimental conditions, we found a significant effect of the inoculum size, both on lag phase duration, and on the maximal population attained. Moreover, the effect of the inoculum size on the growth of L. monocytogenes was dependent on a complex set of interactions. Factors which have appeared to impact on this effect include the cells physiological state, the background microflora, the texture of the media and the packaging system. It is important to understand how these interactions affect the growth of Listeria in order to predict and control its development in food.  相似文献   

7.
The aim of this study was to investigate the mechanism of the observed inhibition of Listeria monocytogenes by the natural biofilm microflora (BM) on wooden shelves used in the ripening of a soft and smear cheese. For this, BM was harvested and we conducted a series of experiments in which two strains of L. monocytogenes were co-cultured with BM on glass fiber filters deposited on model cheeses. Compared to monoculture, L. monocytogenes growth rate in co-culture was not reduced but the growth of the pathogen stopped as soon as BM entered the stationary phase. This reduction in maximum population density can be explained by nutrient consumption and exhaustion by BM as no production of inhibitors by BM has been detected. This mechanism of pathogen inhibition has been previously described as the "Jameson effect".  相似文献   

8.
The growth kinetics of Listeria monocytogenes and natural flora (NF) in minced tuna from 2 to 30 °C were examined, and a simultaneous growth model was developed. The inhibiting effect of the NF on the growth of L. monocytogenes was examined by inoculating different levels of NF isolated from the minced tuna. The kinetic data were fitted to the Baranyi model and estimated the growth parameters such as specific growth rate (μ(max)), maximum population density (N(max)), and lag time. The temperature and inoculated NF dependency on the μ(max) of L. monocytogenes and NF were described by modified Ratkowsky's square-root model. As the initial NF level increased, the slopes of the square-root models were decreased for both L. monocytogenes and NF. The N(max) of L. monocytogenes was described as a function of temperature and inoculated NF level. Simultaneous growth prediction of L. monocytogenes and NF under constant temperature conditions was examined by using the differential equations based on the Baranyi model with the effect of interspecies competition substituted into the developed μ(max) and N(max) models. The root mean square errors between the model prediction and the observation for L. monocytogenes and NF were 0.42 and 0.34, respectively. Predictive simulation under fluctuating temperature conditions also demonstrated a high accuracy of simultaneous prediction for both L. monocytogenes and NF, representing the root mean square errors of 0.19 and 0.34, respectively. These results illustrate that the developed model permits accurate estimation of the behavior of L. monocytogenes in minced tuna under real temperature history until consumption.  相似文献   

9.
Data on the prevalence and growth of Listeria monocytogenes in lightly preserved fish products from subtropical and tropical regions are very scarce. Our research describes L. monocytogenes that was detected in 5% of the packages of cold-smoked surubim, a native Brazilian freshwater fish that we analyzed, and shows that the strains isolated were of the same random amplified polymorphic DNA subtype as the strains that were isolated from the same factory 4 years earlier. A bacteriocinogenic strain of Carnobacterium piscicola (strain C2), isolated from vacuum-packed cold-smoked surubim, and two C. piscicola strains, isolated from vacuum-packed, cold-smoked salmon, were capable of limiting or completely inhibiting the growth of an L. monocytogenes (strain V2) isolated from surubim in fish peptone model systems incubated at 10 degrees C. Monocultures of L. monocytogenes reached 108 CFU/ml (g), whereas the growth of L. monocytogenes was completely inhibited by C. piscicola C2. The bacteriocinogenic C. piscicola A9b+ and its nonbacteriocinogenic mutant A9b- reduced maximum Listeria levels by 2 to 3 log units. Both bacteriocinogenic C. piscicola strains prevented listerial growth in cold-smoked fish juices (surubim and salmon). Although the carnobacteria grew poorly on cold-smoked surubim at 10 degrees C, the strains were able to reduce maximum Listeria counts by 1 to 3 log units in an artificially inoculated product (surubim). We conclude that Brazilian smoked fish products harbor L. monocytogenes and should be stabilized against the growth of the organism. C. piscicola C2 has the potential for use as a bioprotective culture in surubim and other lightly preserved fish, but further studies are required to optimize its effect.  相似文献   

10.
The growth of pathogenic bacterium Listeria monocytogenes on fresh-cut iceberg lettuce under constant temperatures was modelled in order to investigate microbial safety during distribution of this vegetable. We examined the effects of several incubation temperatures, ranging from 5 to 25 degrees C, on bacterial growth. These data were fitted to the Baranyi model and the curves showed a high correlation coefficient at all temperature (R2 > 0.95). In addition, the native bacterial flora of the lettuce did not affect the growth rate of L. monocytogenes regardless of incubation temperature. However, the lag time was reduced at a ratio of native bacteria to inoculated L. monocytogenes (100:1) at low incubation temperatures (5 and 10 degrees C). Furthermore, the maximum population density (MPD) was increased at a low ratio of native to inoculated L. monocytogenes (1:1) at all incubation temperatures. These results were compared with the previous work published by [Buchanan, R.L., Stahl, H.G., Whiting, R.C., 1989. Effects and interactions of temperature, pH, atmosphere, sodium chloride, and sodium nitrite on the growth of Listeria monocytogenes. J. Food Prot. 52, 844-851] that is being developed at the US Department of Agriculture (USDA) Agricultural Research Service's Pathogen Modelling Program (PMP). The broth-based Buchanan model for L. monocytogenes was found to markedly deviate from the observed data. In order to investigate this discrepancy, we examined the effects of medium environment and nutrient content on L. monocytogenes growth using tryptic soy agar plates (TSAP) and agar plates (AP) containing 1.7% sucrose. The inoculated bacteria on both TSAP and AP showed slower growth rates than that predicted by the PMP. The MPD of bacteria grown on TSAP was similar to the PMP model ( approximately 9 log10 CFU/ml or plate (circle of diameter of 90 mm)) regardless of the incubation temperature. By contrast, the MPD observed on AP was approximately 4 log10 CFU lower than that observed on TSAP or predicted by the PMP. Both the growth rate and the MPD of L. monocytogenes on AP were similar to those on lettuce. These results suggest that the solid medium and poor nutrient content inhibited the growth of L. monocytogenes on lettuce. The growth rates of the inoculated L. monocytogenes on all media were described using Ratkowsky's simple square root model.  相似文献   

11.
The risk assessment study of Listeria monocytogenes in ready-to-eat foods conducted by the U.S. Food and Drug Administration is an example of an extensive quantitative microbiological risk assessment that could be used by risk analysts and other scientists to obtain information and by managers and stakeholders to make decisions on food safety management. The present study was conducted to investigate how detailed sensitivity analysis can be used by assessors to extract more information on risk factors and how results can be communicated to managers and stakeholders in an understandable way. The extended sensitivity analysis revealed that the extremes at the right side of the dose distribution (at consumption, 9 to 11.5 log CFU per serving) were responsible for most of the cases of listeriosis simulated. For concentration at retail, values below the detection limit of 0.04 CFU/g and the often used limit for L. monocytogenes of 100 CFU/g (also at retail) were associated with a high number of annual cases of listeriosis (about 29 and 82%, respectively). This association can be explained by growth of L. monocytogenes at both average and extreme values of temperature and time, indicating that a wide distribution can lead to high risk levels. Another finding is the importance of the maximal population density (i.e., the maximum concentration of L. monocytogenes assumed at a certain temperature) for accurately estimating the risk of infection by opportunistic pathogens such as L. monocytogenes. According to the obtained results, mainly concentrations corresponding to the highest maximal population densities caused risk in the simulation. However, sensitivity analysis applied to the uncertainty parameters revealed that prevalence at retail was the most important source of uncertainty in the model.  相似文献   

12.
The effect of superatmospheric oxygen and carbon dioxide concentrations on the growth of Listeria innocua, which was used as a model organism for the pathogen Listeria monocytogenes, was evaluated. The bacteria were grown on a nutrient agar surface at 7 degrees C. Three carbon dioxide levels (0%, 12.5% and 25%) were combined with different levels of high oxygen concentrations (above 20%) based on a mixture design. The applied oxygen concentrations did not significantly influence the growth. High CO2 concentrations, on the contrary, reduced the maximum specific growth rate and prolonged the lag time. An overall model to describe the growth of L. innocua under high carbon dioxide conditions was constructed based on nine growth experiments, using a weighted one-step regression procedure. The influence of carbon dioxide on lag time and maximum specific growth rate was described using Ratkowsky-type models and inserted in the Baranyi equation. The model described the growth very well. To assess the validity of the model, 14 additional experiments were carried out. There was a good correlation of the model predictions and observed validation data.  相似文献   

13.
A cardinal parameter model was developed to predict the effect of diacetate, lactate, CO2, smoke components (phenol), pH, NaCl, temperature, and the interactions between all parameters on the growth of lactic acid bacteria (LAB) in lightly preserved seafood. A product-oriented approach based on careful chemical characterization and growth of bacteria in ready-to-eat seafoods was used to develop this new LAB growth model. Initially, cardinal parameter values for the inhibiting effect of diacetate, lactate, CO2, pH, and NaCl-water activity were determined experimentally for a mixture of LAB isolates or were obtained from the literature. Next, these values and a cardinal parameter model were used to model the effect of temperature (T(min)) and smoke components (P(max)). The cardinal parameter model was fitted to data for growth of LAB (mu(max) values) in lightly preserved seafood including cold-smoked and marinated products with different concentrations of naturally occurring and added organic acids. Separate product validation studies of the LAB model resulted in average bias and accuracy factor values of 1.2 and 1.5, respectively, for growth of LAB (mu(max) values) in lightly preserved seafood. Interaction between LAB and Listeria monocytogenes was predicted by combining the developed LAB model and an existing growth and growth boundary model for the pathogen (O. Mejlholm and P. Dalgaard, J. Food Prot. 70:70-84). The performance of the existing L. monocytogenes model was improved by taking into account the effect of microbial interaction with LAB. The observed and predicted maximum population densities of L. monocytogenes in inoculated lightly preserved seafoods were 4.7 and 4.1 log CFU g(-1), respectively, whereas for naturally contaminated vacuum-packed cold-smoked salmon the corresponding values were 0.7 and 0.6 log CFU g(-1) when a relative lag time of 4.5 was used for the pathogen.  相似文献   

14.
Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15 to 308.15K (4 to 35C). Based on these data, the parameter values of the Baranyi dynamic growth model were statistically determined. Finite element software, ANSYS, was used to determine temperature distributions in milk cartons subject to a time‐varying ambient temperature profile. The space‐time‐temperature data were input to the Baranyi dynamic growth model, to predict the microbial population density distribution and the average population density in the milk carton. The Baranyi dynamic growth model and the finite element model were integrated and validated using experimental results from inoculated sterilized whole milk in half‐gallon laminated paper cartons. In all experiments, the milk cartons were subjected to the same temperature profile as the Baranyi dynamic growth model. Experimental microbial counts were within predicted upper and lower bounds obtained using the integrated Baranyi dynamic growth and finite element models. In addition, the growth curve at the mean value of initial physiological state parameter for L. monocytogenes underpredicted the microbial growth (standard error = 0.54 log (cfu/mL) and maximum relative difference = 15.49%).  相似文献   

15.
The present situation regarding Listeria monocytogenes and ready-to-eat (RTE) seafood is discussed. An updated regulatory policy on L. monocytogenes directs inspection and compliance action to those RTE foods capable of supporting growth of the organism and is based on a combination of inspection, environmental sampling and product testing. The incidence of L. monocytogenes in imported seafood products in 1996-1997 and 1997-1998 was 0.88 and 0.3%, respectively. With respect to domestic products, an analysis of 347 RTE foods in 1997-1998 and 1998-1999, at one of the large fish inspection labs in the Maritimes, revealed an absence of L. monocytogenes. The only seafood product linked to suspect cases of listeriosis in Canada was imported.  相似文献   

16.
A product-specific model was developed and validated under dynamic temperature conditions for predicting the growth of Listeria monocytogenes in pasteurized vanilla cream, a traditional milk-based product. Model performance was also compared with Growth Predictor and Sym'Previus predictive microbiology software packages. Commercially prepared vanilla cream samples were artificially inoculated with a five-strain cocktail of L. monocytogenes, with an initial concentration of 102 CFU g(-1), and stored at 3, 5, 10, and 15 degrees C for 36 days. The growth kinetic parameters at each temperature were determined by the primary model of Baranyi and Roberts. The maximum specific growth rate (mu(max)) was further modeled as a function of temperature by means of a square root-type model. The performance of the model in predicting the growth of the pathogen under dynamic temperature conditions was based on two different temperature scenarios with periodic changes from 4 to 15 degrees C. Growth prediction for dynamic temperature profiles was based on the square root model and the differential equations of the Baranyi and Roberts model, which were numerically integrated with respect to time. Model performance was based on the bias factor (B(f)), the accuracy factor (A(f)), the goodness-of-fit index (GoF), and the percent relative errors between observed and predicted growth. The product-specific model developed in the present study accurately predicted the growth of L. monocytogenes under dynamic temperature conditions. The average values for the performance indices were 1.038, 1.068, and 0.397 for B(f), A(f), and GoF, respectively for both temperature scenarios assayed. Predictions from Growth Predictor and Sym'Previus overestimated pathogen growth. The average values of B(f), A(f), and GoF were 1.173, 1.174, and 1.162, and 1.267, 1.281, and 1.756 from Growth Predictor and Sym'Previus, respectively.  相似文献   

17.
Listeria monocytogenes contamination of ready-to-eat food products such as cold-smoked fish is often caused by pathogen subtypes persisting in food-processing environments. The purpose of the present study was to determine whether these L. monocytogenes subtypes can be found in the outside environment, i.e., outside food processing plants, and whether they survive better in the aquatic environment than do other strains. A total of 400 samples were collected from the outside environment, fish slaughterhouses, fish farms, and a smokehouse. L. monocytogenes was not detected in a freshwater stream, but prevalence increased with the degree of human activity: 2% in seawater fish farms, 10% in freshwater fish farms, 16% in fish slaughterhouses, and 68% in a fish smokehouse. The fish farms and slaughterhouses processed Danish rainbow trout, whereas the smokehouse was used for farm-raised Norwegian salmon. No variation with season was observed. Inside the processing plants, the pattern of randomly amplified polymorphic DNA (RAPD) types was homogeneous, but greater diversity existed among isolates from the outside environments. The RAPD type dominating the inside of the fish smokehouse was found only sporadically in outside environments. To examine survival in different environments, L. monocytogenes or Listeria innocua strains were inoculated into freshwater and saltwater microcosms. Pathogen counts decreased over time in Instant Ocean and remained constant in phosphate-buffered saline. In contrast, counts decreased rapidly in natural seawater and fresh water. The count reduction was much slower when the natural waters were autoclaved or filtered (0.2-microm pore size), indicating that the pathogen reduction in natural waters was attributable to a biological mechanism, e.g., protozoan grazing. A low prevalence of L. monocytogenes was found in the outside environment, and the bacteria did not survive well in natural environments. Therefore, L. monocytogenes in the outer environment associated with Danish fish processing is probably of minor importance to the environment inside a fish production plant.  相似文献   

18.
To describe the growth limits of Listeria monocytogenes NCTC10527 in a sliced vacuum-packaged cooked cured meat product, the binary logistic regression model was used to develop an equation to determine the probability of growth or no growth of L. monocytogenes as a function of temperature (from 0 to 10 degrees C) and water activity (from 0.88 to 0.98). Two inoculum concentrations were used (10 and 10(4) CFU g(-1)), and the growth limits for the two inocula were different. The kinetic behavior of L. monocytogenes as a function of temperature (4, 8, 12, and 16 degrees C) on the same meat product at the lower concentration (10 CFU g(-1)) was also studied. The Baranyi model appeared to fit the overall experimental data better than did the modified Gompertz and the modified logistic models. Maximum specific growth rate (micromax), lag phase duration (LPD), and maximum cell concentration (Nmax) derived from the primary model were modeled using the square root function (micromax and LPD) and a second order polynomial (Nmax) (secondary models). The selection of the best model (primary or secondary) was based on some statistical indices (the root mean square error of residuals of the model, the regression coefficient, the F test, the goodness of fit, and the bias and accuracy factor). The developed kinetic behavior model was validated under constant and dynamic temperature storage conditions. This prediction of L. monocytogenes growth provides useful information for improving meat safety and can be used for in-depth inspection of quality assurance systems in the meat industry.  相似文献   

19.
The objective of this study was to estimate the test accuracy measures (classification probabilities [CPs], predictive values [PVs], likelihood ratios [LRs] and area under receiving operating characteristic curve [AUC]) of three different culture-dependent methods, commonly used during routine analysis for the detection of the foodborne pathogen Listeria monocytogenes, from a Bayesian perspective. Data from a previous study by Andritsos et al. (2010) were used to define measures of accuracy for the diagnostic tests. Samples of minced pork meat obtained from local markets were tested for L. monocytogenes presence by parallel testing using selective media (PALCAM, ALOA and RAPID'L.mono). Dirichlet distribution, which is the multivariate expression of a Beta distribution, was used to analyze the data. Bayesian analysis determines characteristics of the posterior distribution from available prior information. Results showed that all methods were best at ruling in L. monocytogenes presence than ruling it out. PALCAM seemed to have better performance based on positive PV, positive LR and AUC, but it was not so sensitive as RAPID'L.mono was. Results also showed that none of the media were perfect in detecting L. monocytogenes, i.e. sensitivity and specificity equal to one. Besides, the problem of observing zero counts may be overcome by applying Bayesian analysis, making the determination of a test performance feasible.  相似文献   

20.
Listeria monocytogenes, a psychrotrophic microorganism, has been the cause of several food-borne illness outbreaks, including those traced back to pasteurized fluid milk and milk products. This microorganism is especially important because it can grow at storage temperatures recommended for milk (< or =7 degrees C). Growth of L. monocytogenes in fluid milk depends to a large extent on the varying temperatures it is exposed to in the postpasteurization phase, i.e., during in-plant storage, transportation, and storage at retail stores. Growth data for L. monocytogenes in sterilized whole milk were collected at 4, 6, 8, 10, 15, 20, 25, 30, and 35 degrees C. Specific growth rate and maximum population density were calculated at each temperature using these data. The data for growth rates versus temperature were fitted to the Zwietering square root model. This equation was used to develop a dynamic growth model (i.e., the Baranyi dynamic growth model or BDGM) for L. monocytogenes based on a system of equations which had an intrinsic parameter for simulating the lag phase. Results from validation of the BDGM for a rapidly fluctuating temperature profile showed that although the exponential growth phase of the culture under dynamic temperature conditions was modeled accurately, the lag phase duration was overestimated. For an alpha0 (initial physiological state parameter) value of 0.137, which corresponded to the mean temperature of 15 degrees C, the population densities were underpredicted, although the experimental data fell within the narrow band calculated for extreme values of alpha0. The maximum relative error between the experimental data and the curve based on an average alpha0 value was 10.42%, and the root mean square error was 0.28 log CFU/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号