首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical insertion of sodium into graphite was studied in molten sodium fluoride at 1025 °C. The results obtained evidenced two mechanisms for sodium insertion into graphite: sodium intercalation between the graphite layers and sodium sorption into the porosity of the material. Subsequent internal rearrangement of inserted sodium occurred, via transference from the pores towards the intercalation sites. In addition, the intercalation compound was found to undergo a fast decomposition process (k = 2.55 × 10−9 mol s−1). X-ray diffraction analysis was used to confirm the formation of a high stage compound (Na0.1C8), the composition of which was consistent with compositions observed in the case of chemical vapor and electrochemical insertion of sodium, during experiments in the sodium perchlorate-ethylene cabonate electrolyte.  相似文献   

2.
The electrochemical behavior of AZ91D in various aqueous sodium halide solutions was investigated using open-circuit potential (Eoc), potentiodynamic polarization and ac impedance (EIS) techniques. Generally, the results reveal that during immersion a protective layer of a salt film is formed on the alloy surface whose passivation performance depends on the halide nature, its concentration and temperature. Eoc shifts positively with time until attaining a steady (Est) value, which becomes less noble with increasing concentration or temperature of the test solution. At any given conditions, self-passivation was found to be favored in the order F > I > Br > Cl. This sequence is consistent with that for surface film resistance (RT) and its relative thickness (1/CT). Nevertheless, in F medium each of the above parameters increases with [F] up to a critical value of 0.3 M then decreases. Increasing concentration above 0.3 M induces large change in the microstructure of the outermost layer of the fluorinated extremely protective film and depassivation behavior predominates. In Br and I solutions, as well as the lower Cl concentrations (≤0.01 M), AZ91D exhibits pseudo-passive state over the polarization range from the corrosion potential (Ecorr) to the knee point (Ept) in the anodic scan, at which passivity breakdown occurs with rapid increase in the anodic current and hydrogen gas reaction. At Cl concentrations >0.01 M the negative difference effect (NDE) occurs under cathodic polarization where Ept lies negative to Ecorr. Addition of F to the Cl solution can induce large changes in the behavior of AZ91D. Equal concentration addition (1:1) produces the highest propensity of the surface to form passivating layer that can afford better protection.  相似文献   

3.
Self-assembled monolayers of dodecanethiol (C12SH-SAMs) on polycrystalline gold were prepared under ultrasonic irradiation at 100 W (the actual ultrasonic power intensity is about 0.1 W cm−2 including the heat loss) for different time and investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV experiments show that the differential capacitance Cd values of the C12SH-SAM prepared under ultrasonic irradiation at 100 W (0.1 W cm−2) for 15 min are independent of the scan rate, the thickness d value of this monolayer is 17.5 Å, the tilt angle φ value of the molecules in this monolayer from the gold surface normal was calculated to be 30° and the difference value of the current density at −0.2 and 0.5 V (Δip) is only 0.69 μA cm−2. From the EIS experiments, we find that the phase angle value at 1 Hz Φ1 Hz of the C12SH-SAM prepared under ultrasonic irradiation at 100 W (0.1 W cm−2) for 15 min is 89°, the charge transfer resistance Rct value of this monolayer is 1.40 × 106 Ω cm2 and the surface coverage θ value of this monolayer was calculated to be 99.997% from Rct. These results indicate that the C12SH-SAM of almost defect-free structure and very low ionic permeability can be formed under ultrasonic irradiation at 100 W (0.1 W cm−2) in a short time (15 min).  相似文献   

4.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

5.
Fluorinated cationic cathodic electrodepositing (CED) resins were synthesized by copolymerization of several acrylic monomers including Zonyl. Water dispersible cationic blocked-diisocyanate (denoted as TId) was also synthesized from isophorone diisocyanate (IPDI), cationic triethanolamine (TEOA), and dimethylpyrazole as the cross-linker for the low temperature curing at 90–120 °C. The emulsion stability of the cationic fluorinated CED resin was improved by ionization of the cross-linker TId, showing a mean particle diameter of 140–150 nm and a narrow distribution. 0.5 wt% of curing catalyst dibutyltin dilaurate (DBTL) was enough to accelerate the curing reaction and the gel content of the TId cured fluorinated CED film was higher than 90 wt% after being cured at 130 °C for 40 min. The contact angle and XPS spectrum of the CED film demonstrated that the surface enrichment of C–F2 and C–F3 groups effectively reduced the surface tension of the fluorinated CED coating and its surface tension γsv is even lower than 15 mN m−1 for PTFE. The preheating of the CED film above Tg but below curing temperature promoted this surface enrichment of the fluorinated groups. Thermal fragmentation of the fluorinated side chains in the CED resins was successfully avoided due to using TId for low temperature curing.  相似文献   

6.
The propagation and termination rate coefficients for bulk polymerization of the butyl acrylate dimer (BA dimer) are determined by pulsed laser techniques. The rate coefficient for propagation, kp, is deduced for temperatures from 20 to 90 °C via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method at pulse repetition rates between 1 and 10 Hz. The Arrhenius parameters were found to be: EA(kp) = (34.2 ± 1.0) kJ mol−1 and A(kp)/L mol−1 s−1 = (1.08 ± 0.49) × 107 L mol−1 s−1. The termination rate coefficient, kt, has been measured via SP-PLP-ESR, single pulse-pulsed laser polymerization in conjunction with time-resolved electron spin resonance detection of radical concentration. The resulting Arrhenius parameters as deduced from the temperature range −15 to +30 °C are: EA(〈kt〉) = (22.8 ± 3.7) kJ mol−1 and log(A/L mol−1 s−1) = 10.6 ± 1. The chain-length dependence of kt was studied at 30 °C. For short chains a significant dependence was found which may be represented by an exponent α = 0.79 in the power-law expression kt(i) = kt0i−α.  相似文献   

7.
Graphite intercalation compounds (GICs) of composition Cx[FB(C2F5)3] · δF are prepared for the first time by the intercalation of fluoro-tris(pentafluoroethyl)borate anion, [FB(C2F5)3], under ambient conditions in 48% hydrofluoric acid containing the oxidant K2[MnF6]. Powder XRD data indicate that products are of mixed stages 2 and 3 after reactions for 1-20 h, with a gallery height of 0.87 nm. The intercalate orientation is modeled using an energy-minimized anion structure. Microwave digestion followed by B and F elemental analyses, along with thermogravimetric analyses provide compositional x and δ parameters for the GICs obtained. In addition, Cx[FB(C2F5)3] · δCH3NO2 with stage 2 is prepared by electrochemical oxidation of graphite in a nitromethane solution and characterized as above.  相似文献   

8.
The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO2 electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO2 electrode and 1.75 mM for the BDD electrode, using 0.035 M Na2SO4 as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm−2). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm−2 but a very different one at 30 mA cm−2. The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm−2.  相似文献   

9.
Fluorination of carbon nanofibres (CNFs) under fluorine gas at 480 °C leads to high fluorine content but also to some partial exfoliation. In order to avoid such phenomenon, an alternative route has been performed at temperatures ranged between 420 and 500 °C using a fluorinating agent, i.e. terbium tetrafluoride. The structural properties of the fluorinated CNFs are discussed taking into account the data of 13C solid state NMR, Raman spectroscopy, SEM, TEM and XRD. Whatever the fluorination temperature, a fluorinated phase of (CF)n structural type, is formed contrary to the direct process using F2 gas for which a (C2F)n-type fluorinated phase appeared for fluorination temperatures lower than 450 °C. The progressive release of fluorine atoms from the thermal decomposition of TbF4 allows an homogenous distribution of the fluorinated part into the CNFs matrix and the formation of a unique (CF)n type structure. Moreover, for high fluorination temperatures (480 and 500 °C), the fluorination leads to some nanofibres breaking but in no way to exfoliation.  相似文献   

10.
Thermal hydrocracking and catalytic hydrocracking over NiMo/γ-Al2O3 of a pentane-insoluble asphaltene were conducted in a microbatch reactor at 430 °C. The experimental data of asphaltene conversion fit second-order kinetics adequately, to give the apparent rate constants of 2.435 × 10−2 and 9.360 × 10−2 wt frac−1 min−1 for the two processes respectively. A three-lump kinetic model is proposed to evaluate rate constants of parallel reactions from asphaltenes to liquid oil (k1) and to gas + coke (k3), and consecutive reaction from liquid to gas + coke (k2). The evaluated k1 is 2.430 × 10−2 and 9.355 × 10−2 wt frac−1 min−1, k2 is 2.426 × 10−2 and 6.347 × 10−3 min−1, and k3 is 5.416 × 10−5 and 4.803 × 10−5 wt frac−1 min−1 for asphaltenes hydrocracking in the presence or absence of the catalyst, respectively. Analysis of selectivity shows that the catalytic hydrocracking process promotes liquid production and inhibits coke formation effectively.  相似文献   

11.
The electrochemical oxidation of chloranilic acid (CAA) has been studied in acidic media at Pb/PbO2, boron-doped diamond (Si/BDD) and Ti/IrO2 electrodes by bulk electrolysis experiments under galvanostatic control. The obtained results have clearly shown that the electrode material is an important parameter for the optimization of such processes, deciding of their mechanism and of the oxidation products. It has been observed that the oxidation of CAA generates several intermediates eventually leading to its complete mineralization. Different current efficiencies were obtained at Pb/PbO2 and BDD, depending on the applied current density in the range from 6.3 to 50 mA cm−2. Also the effect of the temperature on Pb/PbO2 and BDD electrodes was studied.UV spectrometric measurements were carried out at all anodic materials, with applied current density of 25 and 50 mA cm−2. These results showed a faster CAA elimination at the BDD electrode. Finally, a mechanism for the electrochemical oxidation of CAA has been proposed according to the results obtained with the HPLC technique.  相似文献   

12.
The performances of the Ti-Pt/β-PbO2 and boron-doped diamond (BDD) electrodes in the electrooxidation of simulated wastewaters containing 85 mg L−1 of the Reactive Orange 16 dye were investigated using a filter-press reactor. The electrolyses were carried out at the flow rate of 7 L min−1, at different current densities (10-70 mA cm−2), and in the absence or presence of chloride ions (10-70 mM NaCl). In the absence of NaCl, total decolourisation of the simulated dye wastewater was attained independently of the electrode used. However, the performance of the BDD electrode was better than that of the Ti-Pt/β-PbO2 electrode; the total decolourisations were achieved by applying only 1.0 A h L−1 and 2.0 A h L−1, respectively. In the presence of NaCl, with the electrogeneration of active chlorine, the times needed for total colour removal were markedly decreased; the addition of 50 mM Cl or 35 mM Cl (for Ti-Pt/β-PbO2 or BDD, respectively) to the supporting electrolyte led to a 90% decrease of these times (at 50 mA cm−2). On the other hand, total mineralization of the dye in the presence of NaCl was attained only when using the BDD electrode (for 1.0 A h L−1); for the Ti-Pt/β-PbO2 electrode, a maximum mineralization of 85% was attained (for 2.0 A h L−1). For total decolourisation of the simulated dye wastewater, the energy consumption per unit mass of dye oxidized was only 4.4 kWh kg−1 or 1.9 kWh kg−1 using the Ti-Pt/β-PbO2 or BDD electrode, respectively. Clearly the BDD electrode proved to be the best anode for the electrooxidative degradation of the dye, either in the presence or absence of chloride ions.  相似文献   

13.
The complex of rutin-Cu (C81H86Cu2O48, abbreviated by Cu2R3, R = rutin) was synthesized and characterized by elemental analysis and IR spectra. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction of Cu2R3 with salmon sperm DNA. It was revealed that Cu2R3 could interact with double-stranded DNA (dsDNA) by a major intercalation role. Using Cu2R3 as a novel electroactive indicator, an electrochemical DNA biosensor for the detection of specific DNA fragment was developed and its selectivity for the recognition with different target DNA was assessed by differential pulse voltammetry (DPV). The target DNA related to coliform virus gene could be quantified ranged from 1.62 × 10−8 mol L−1 to 8.10 × 10−7 mol L−1 with a good linearity (r = 0.9989) and a detection limit of 2.3 × 10−9 mol L−1 (3σ, n = 7) was achieved by the constructed electrochemical DNA biosensor.  相似文献   

14.
Electron transfer (ET) kinetics through n-dodecanethiol (C12SH) self-assembled monolayer on gold electrode was studied using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). An SECM model for compensating pinhole contribution, was used to measure the ET kinetics of solution-phase probes of ferrocyanide/ferricyanide (Fe(CN)64−/3−) and ferrocenemethanol/ferrociniummethanol (FMC0/+) through the C12SH monolayer yielding standard tunneling rate constant () of (4 ± 1) × 10−11 and (3 ± 1) × 10−10 cm s−1 for Fe(CN)64−/3− and FMC0/+ respectively. Decay tunneling constants (β) of 0.97 and 0.96 Å−1 for saturated alkane thiol chains were obtained using Fe(CN)64− and FMC respectively. Also, it was found that methylene blue (MB) molecules are effectively immobilized on the C12SH monolayer and can mediate the ET between the solution-phase probes and underlying gold substrate. SECM-mediated model was used to simultaneously measure the bimolecular ET between the solution-phase probes and the monolayer-immobilized MB molecules, as well as tunneling ET between the monolayer-immobilized MB molecules and the underlying gold electrode, allowing the measurement of kBI = (5 ± 1) × 106 and (4 ± 2) × 107 cm3 mol−1 s−1 for the bimolecular ET and and (7 ± 3) × 10−2 s−1 for the standard tunneling rate constant of ET using Fe(CN)64−/3− and FMC0/+ probes respectively.  相似文献   

15.
Dieter Heymann 《Carbon》2005,43(11):2235-2242
The mean lifetimes of polyyne C8H2 in hexane were determined at 50, 60, 80, and 100 °C and in methanol at 60 °C. The reactions are second order at all temperatures: ln k2 = 20.5 ± 1.5-10303 ± 520T−1 and the corresponding activation energy is 85.7 ± 6.3 kJ mol−1 (7164 cm−1). Extrapolation suggests that solutions at 1 mM concentration are significantly unstable at room temperature. Quantum chemical calculations show that polyynes CmH2 + CnH2 (m + n = 16) could be products, but these were not detected. Alternatively, C16H2 isomers could form. IR spectra of the solid residues from hexane and methanol solutions were obtained.  相似文献   

16.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

17.
A pentane-insoluble asphaltene was processed by thermal cracking and catalytic hydrocracking over NiMo/γ-Al2O3 in a microbatch reactor at 430 °C. Kinetic analysis shows that the first-order kinetics fits the data of conversion in reaction times ≤ 30 min approximately, but deviates from the data of times over 30 min significantly; whereas the second-order kinetics fits the data of the reaction times up to 60 min adequately, to give the apparent rate constants of 1.704 × 10−2 and 9.360 × 10−2 wt frac−1min−1 for the two cracking processes. Furthermore, a three-lump kinetic model is proposed to include parallel reactions of asphaltenes to produce liquid oil (k1) and gas + coke (k3), and consecutive reaction from liquid to gas + coke (k2). The evaluated value of k1 is 1.697 × 10−2 and 9.355 × 10−2 wt frac−1min−1, k2 is 3.605 × 10−2 and 6.347 × 10−3 min−1 , and k3 is 6.934 × 10−5 and 4.803 × 10−5 wt frac−1min−1 for asphaltenes thermal cracking and catalytic hydrocracking, respectively. Selectivity analysis shows that the catalytic hydrocracking process promotes liquid production and inhibits coke formation effectively.  相似文献   

18.
Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for electric double-layer capacitor (EDLC) consisting of the 1 M (C2H5)3CH3NBF4 electrolyte in acetonitrile and micro/mesoporous carbon electrodes prepared from Mo2C, noted as C(Mo2C). The N2 sorption (total BET specific surface area (SBET ≤ 1855 m2 g−1), micropore area (Smicro ≤ 1823 m2 g−1), total pore volume (Vtot ≤ 1.399 m3 g−1) and pore size distribution (average NLDFT pore width dNLDFT ≥ 0.89 nm) values obtained have been correlated with the electrochemical characteristics for EDLCs (region of ideal polarizability (ΔV = 3.0 V), characteristic time constant (τR = 1.05 s), gravimetric capacitance (Cm ≤ 143 F g−1)) dependent strongly on the C(Mo2C) synthesis temperature. High gravimetric energy (35 Wh kg−1) and gravimetric power (237 kW kg−1) values, normalised to the total active mass of both C(Mo2C) electrodes, synthesised at Tsynt = 800 °C, have been demonstrated at cell voltage 3.0 V and T = 20 °C.  相似文献   

19.
Elanio A. Medeiros 《Fuel》2011,90(4):1696-1699
The rate constants for the quenching of biacetyl phosphorescence by a series of conjugated dienes were measured. 1,3-cyclohexadiene (kqP = 2.94 × 109 s−1 mol−1 L), 2,5-dimethyl-2,4-hexadiene (kqP = 1.91 × 109 s−1 mol−1 L), 2,4-dimethyl-1,3-pentadiene (kqP = 1.78 × 108 s−1 mol−1 L), 3-methyl-1,3-pentadiene (kqP = 1.22 × 108 s−1 mol−1 L), 2,4-hexadiene (kqP = 1.35 × 108 s−1 mol−1 L) and trans-2-methyl-1,3-pentadiene (kqP = 3.84 × 108 s−1 mol−1 L). Cyclooctene also quenched biacetyl phosphorescence but with a lower rate (kqP = 1.97 × 107 s−1 mol−1 L). Quenching was not observed with 1-methylnaphthalene. Since conjugated dienes quench biacetyl phosphorescence preferentially, this method was studied using gasoline samples with known diene composition. A good correlation was found between the rate of quenching of biacetyl by the gasoline samples and the quantity of conjugated dienes present.  相似文献   

20.
Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO2 is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 × 10−4 cm/s and (1 − α)nα is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号