首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C60 fullerene clusters are used as a carbon source for amorphous carbon films deposition in an electron beam excited plasma. C60 clusters are sublimated by heating a ceramic crucible containing the C60 powders up to 850 °C, which is located in a highly vacuumed process chamber. The sublimated fullerene powders are injected to the electron beam excited argon plasma and dissociated to be active species that are propelled toward the substrates. Consequently, the carbon species condense as a thin film onto the negatively biased substrates that are immersed in the plasma. Deposition rates of approximately 1.0 μm/h and the average surface roughness of 0.2 nm over an area of 400 μm2 are achieved. Decomposition of the C60 fullerene after injecting into the plasma is confirmed by optical emission spectroscopy that shows existence of small carbon species such as C2 in the plasma. X-ray diffraction pattern reveals that the microstructure of the film is amorphous, while fullerene films deposited without the plasma show crystalline structure. Raman spectroscopic analysis shows that the films deposited in the plasma are one of the types of diamond-like carbon films. Different negative bias voltages have been applied to the substrate holder to examine the effect of the bias voltage to the properties of the films. The nano-indentation technique is used for hardness measurement of the films and results in hardness up to about 28 GPa. In addition, the films are droplet-free and show superior lubricity.  相似文献   

2.
V. Singh  R.C. Tittsworth 《Carbon》2006,44(7):1280-1286
Composite Cr-containing hydrogenated amorphous diamond-like carbon (Cr-DLC) films were synthesized by a hybrid PVD/CVD plasma-assisted deposition process. In a recent study, it was found that Cr-DLC films with <∼12 at.% Cr possess excellent tribological properties. However, the role of Cr in inducing these characteristics is not clear. In the present report, the local structure around the Cr atoms in the latter films was studied as a function of Cr content by X-ray absorption spectroscopy. The Cr K-edge X-ray absorption near edge structure spectra show that Cr in DLC has a chemical state similar to that of chromium carbide. Analysis of the extended X-ray absorption fine structure spectra shows that at low Cr content (<0.4 at.% Cr), Cr is dissolved in the amorphous DLC matrix forming an atomic-scale composite. Simulation studies suggest that in the latter films, Cr tends to be present as very small atomic clusters of 2-3 Cr atoms. At higher Cr contents (>1.5 at.%), Cr is present as nanoparticles (<10 nm) of a defected carbide structure forming a nanocomposite.  相似文献   

3.
Diamond-like carbon (DLC) thin films were grown on Si-(100) substrates by a magnetically-assisted pulsed laser deposition (PLD) technique. The role of magnetic field on the structural, morphological, mechanical properties and deposition rate of DLC thin films has been studied. The obtained films were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and nanoindentation techniques. It was found that the diamond-like character, thickness and deposition rate of the DLC films increase in the presence of magnetic field. The films deposited under magnetic field exhibit a denser microstructure and smoother surface with lower surface roughness. Meanwhile, the mechanical properties of the magnetically processed DLC thin films experience an improvement, relative to the conventionally processed ones. It seems that the DLC films deposited under magnetic field can be better candidate for hard and wear resistance coating applications.  相似文献   

4.
LiCoO2 thin films were deposited using radio frequency (rf) magnetron sputtering system on stainless steel substrates. Different rf powers, up to 150 W, were applied during deposition. The as-deposited films exhibited (1 0 1) and (1 0 4) preferred orientation and the nanocrystalline film structure was enhanced with increasing rf power. The film crystallinity was examined using X-ray diffraction, Raman scattering spectroscopy and transmission electron microscopy. The compositions of the films were determined by inductively coupled plasma-mass spectroscopy. The average discharge capacity of as-deposited films is about 59 μAh/(cm2 μm) for cut-off voltage range of 4.2 and 3.0 V. From the electrochemical cycling data, it is suggested that as-deposited LiCoO2 films with a nanocrystalline structure and a favorable preferred orientation, e.g. (1 0 1) or (1 0 4) texture, can be used without post-annealing at high temperatures for solid-state thin film batteries.  相似文献   

5.
Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-type silicon (p-Si) and quartz substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at low temperature (< 100 °C). For films deposition, argon (Ar: 200 sccm), acetylene (C2H2:10 sccm) and nitrogen (N: 5 sccm) were used as carrier, source and doping gases respectively. DLC:N thin films were deposited at 1000 W microwave power where as gas composition pressures were ranged from 110 Pa to 50 Pa. Analytical methods such as X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, FTIR and Raman spectroscopy were employed to investigate the chemical, optical and structural properties of the DLC:N films respectively. The lowest optical gap of the film was found to be 1.6 eV at 50 Pa gas composition pressure.  相似文献   

6.
We measured the florescence X-ray absorption fine structure (XAFS) spectra of gallium atoms in a diamond-like carbon (DLC) thin film deposited by focused ion beam-chemical vapor deposition (FIB-CVD). Ga K-edge XAFS spectra were measured by monitoring the Ga Kα line in the energy range of 9.9–11.5 keV. The radial distribution function was calculated from the Fourier transform of the extended X-ray absorption fine structure (EXAFS) oscillation that had been obtained by appropriately removing the background and normalization. The peak due to the carbon atoms nearest the central gallium atom was at 1.6 Å. A comparison of the experimentally measured EXAFS oscillation and one calculated by single scattering theory indicated that the coordination number around the central gallium atom and the interatomic distance between the central gallium atom and the carbon atom were ≈ 6.4 and ≈ 2.6 Å, respectively. The interatomic distances for FIB-CVD DLC thin films annealed for 1 h at 200 °C and at 400 °C were the same as the as-deposited film.  相似文献   

7.
Nanostructured CNx thin films were prepared by supersonic cluster beam deposition (SCBD) and systematically characterized by transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The incorporation of nitrogen in the films (0 < x < 0.2) and the nanostructure were controlled by using different synthesis routes. Films containing bundles of well-ordered graphene multilayers, onions and nanotubes embedded in an amorphous matrix were grown alongside purely amorphous films by changing the deposition parameters. Graphitic nanostructures were synthesized without using metallic catalysts. The structural and electronic properties of the films have been studied by EELS. The role played by N in the carbon nanostructures has been deduced from XPS line-shape analysis.  相似文献   

8.
Mo-doped diamond-like carbon (Mo/DLC) films were deposited on stainless steel and Si wafer substrates via unbalanced magnetron sputtering of molybdenum combined with inductively coupled radio frequency (RF) plasma chemical vapor deposition of CH4/Ar. The effects of Mo doping and sputtering current on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), and nano-indentation. It was found that Mo doping led to increase in the content of sp2 carbon, and hence decreased the hardness and elastic modulus of Mo/DLC films as compared with that of DLC films. The content of Mo in the films increased with the increasing sputtering current, and most of Mo reacted with C atoms to form MoC nanocrystallites at a higher sputtering current. Moreover, the Mo-doped DLC films had greatly decreased internal stress and increased adhesion to the substrate than the DLC film, which could be closely related to the unique nanocomposite structure of the Mo-doped films. Namely, the Mo/DLC film was composed of MoC nanoparticles embedded in the cross-linked amorphous carbon matrix, and such a kind of nanostructure was beneficial to retaining the loss of hardness and elastic modulus.  相似文献   

9.
Guangze Tang  Mingren Sun 《Carbon》2005,43(2):345-350
Fluorocarbon films were deposited on silicon substrate by R.F. magnetron sputtering using a polytetrafluoroethylene (PTFE) target. Structure of the deposited films was studied by X-ray photoelectron spectroscopy (XPS). Hardness, elastic modulus and scratch resistance were measured using a nanoindenter with scratch capability. -CFx (x = 1, 2, 3) and C-C units were found in the deposited fluorocarbon films. The hardness and elastic modulus of the films are strongly dependent on the R.F. power and deposition pressure. The film hardness is in the range from 0.8 GPa to 1.3 GPa while the film elastic modulus is in the range from 8 GPa to 18 GPa. Harder films exhibit higher scratch resistance. Differences in nanoindentation behavior between the deposited fluorocarbon films, diamond-like carbon (DLC) films and PTFE were discussed. The fluorocarbon films should find more applications in the magnetic storage and micro/nanoelectromechanical systems.  相似文献   

10.
Diamond-like carbon (DLC) thin films were deposited from pure graphite target by DC magnetron sputtering method. Experimental parameters, i.e., substrate temperature and negative bias voltage, have been changed to finely tune the chemical bonding property (sp2/sp3) of the as-deposited DLC films. The as-deposited DLC films were characterized as anode materials for Li–ion batteries and special attentions were paid to the effects of sp2/sp3 ratio on the electrochemical properties of the DLC films. The results indicated that a high fraction of sp2 bonding in the DLC films is preferred for high lithium storage capacity, flat and low charge voltage plateau, and long cycling retention.  相似文献   

11.
R.Z. Hu 《Electrochimica acta》2008,53(8):3377-3385
Thin film Sn-Cu anodes with high Cu content were prepared by electron-beam evaporation deposition using Cu substrate as current collector. Annealing, with the condition being determined by DSC, was used to improve the performance of these electrodes. X-ray diffraction (XRD), scanning probe microscopy (SPM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the structure and composition of the Sn-Cu thin film electrodes. Cyclic voltammetry and galvanostatical charge-discharge measurement were carried out to characterize the electrochemical properties of the as-deposited and annealed electrodes. ?-Cu3Sn intermetallic phase was formed and interface strength between deposited active materials layer and current collector was enhanced by annealing the as-deposited film under suitable condition. The annealed thin film electrode showed good cycleability and had no phase change during cycling. Although large initial capacity loss was found associated with SEI formation due to increase of surface roughness of annealed electrode, a stable discharge capacity near 300 mAh/g with Coulomb efficiency of about 96% was obtained at voltage window of 0.1-2.0 V and a discharge capacity of about 200 mAh/g and Coulomb efficiency of 97% were kept stable up to 30th cycle at a narrower voltage window of 0.2-1.5 V versus Li/Li+.  相似文献   

12.
Carbon films were deposited on silicon substrates by liquid electrochemical technique at low temperature (60 °C) in ambient atmosphere. Glass reactor, glass reactor with PTFE-coating inside, glass reactor with quartz-coating inside and quartz reactor were used with the same experimental setup to compare the effects of reactors on the deposition of carbon films. The applied potential, the distance between anode and substrate and the deposition time were fixed at 900 V (4.2 kHz, 50%), 6 mm and 5 h, respectively. The morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM) and Raman spectroscopy. Energy Dispersive X-ray Spectrometry (EDX) was used to measure the composition of the films. The SEM observations showed that the films deposited using glass reactor were composed of crystals of several micrometers which contained nearly 10 at.% of Ca. Raman spectroscopy analysis confirmed that DLC films have been deposited, but with an obvious sharp peak at 1085 cm− 1 which is assigned to calcium carbonate (CaCO3) crystals. The glass reactor is the possible source of Ca because the electrolyte was composed of analytically pure acetone and deionized water with the proportion of Ca below the determination of AAS (atomic absorption emission spectrophotometer AA-6200). Using glass reactor with PTFE-coating inside could successfully avoid the impurity of Ca from the glass reactor, but new non-metallic impurities coming from the PTFE-coating made the films rough. Continuous and smooth films were deposited by using a glass reactor with quartz-coating inside and quartz reactor, which could avoid both Ca (< 1 at.%) and other impurities. Raman spectroscopy analysis confirmed typical DLC films without CaCO3. It can be concluded that the materials of the reactors could play an important role not only in the composition, but also the morphology and microstructure of films deposited by liquid electrochemical technique.  相似文献   

13.
We demonstrate alteration in diamond-like carbon (DLC) film structure, chemistry and adhesion on steel, related to variation in the argon plasma pretreatment stage of plasma enhanced chemical vapour deposition. We relate these changes to the alteration in substrate structure, crystallinity and chemistry due to application of an argon plasma process with negative self bias up to 600 V.Adhesion of the DLC film to the substrate was assessed by examination of the spallated fraction of the film following controlled deformation. Films with no pretreatment step immediately delaminated. At 300 V pretreatment, the spallated fraction is 8.2%, reducing to 1.2% at 450 V and 0.02% at 600 V. For bias voltages below 450 V the adhesion enhancement is explained by a reduction in carbon contamination on the substrate surface, from 59 at.% with no treatment to 26 at.% at 450 V, concurrently with a decrease in the surface roughness, Rq, from 31.5 nm to 18.9 nm. With a pretreatment bias voltage of 600 V a nanocrystalline, nanostructured surface is formed, related to removal of chromium and relaxation of stress; X-ray diffraction indicates this phase is incipient at 450 V. In addition to improving film adhesion, the nanotexturing of the substrate prior to film deposition results in a DLC film that shows an increase in sp3/sp2 ratio from 1.2 to 1.5, a reduction in surface roughness from 31 nm to 21 nm, and DLC nodular asperities with reduced diameter and increased uniformity of size and arrangement. These findings are consistent with the substrate alterations due to the plasma pretreatment resulting in limitation of surface diffusion in the growth process. This suggests that in addition to deposition phase processes, the parameters of the pretreatment process need to be considered when designing diamond-like carbon coatings.  相似文献   

14.
The effects of annealing temperature on the photocatalytic activity of nitrogen-doped (N-doped) titanium oxide (TiO2) thin films deposited on soda-lime-silica slide glass by radio frequency (RF) magnetron sputtering have been studied. Glancing incident X-ray diffraction (GIAXRD), Raman spectrum, scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectra were utilized to characterize the N-doped TiO2 thin films with and without annealing treatment. GIAXRD and Raman results show as-deposited N-doped TiO2 thin films to be nearly amorphous and that the rutile and anatase phases coexisted when the N-doped TiO2 thin films were annealed at 623 and 823 K for 1 h, respectively. SEM microstructure shows uniformly close packed and nearly round particles with a size of about 10 nm which are on the slide glass surface for TiO2 thin films annealed at 623 K for 1 h. AFM image shows the lowest surface roughness for the N-doped TiO2 thin films annealed at 623 K for 1 h. The N-doped TiO2 thin films annealed at 623 K for 1 h exhibit the best photocatalytic activity, with a rate constant (ka) of about 0.0034 h−1.  相似文献   

15.
Carbon-sulfur films were grown by pulsed laser deposition at room temperature using different graphite-sulfur mixtures as targets. The structure of the films was characterized by X-ray diffraction and transmission electron microscopy. The composition and the chemical bonds were analyzed by Rutherford-backscattering spectroscopy, X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. The films were composed of amorphous carbon with sp2-, sp3- and S-C-C-S bonds and textured graphite on the top of the film. The thin graphite layer on top of the carbon-sulfur films is highly oriented, comparable to highly oriented pyrolytic graphite, and free of sulfur in the graphite lattice. The lateral size of the oriented graphite grains in the films was up to 8 μm. Magnetic measurements reveal that the films prepared under the conditions of our study show neither magnetic ordering nor superconductivity in the studied temperature range T > 2 K.  相似文献   

16.
Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon–silver (DLC–Ag), diamondlike carbon–platinum (DLC–Pt), and diamondlike carbon–silver–platinum (DLC–AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC–silver and DLC–platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon–silver film possessed hardness and Young’s modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon–metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC–silver–platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon–silver–platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.  相似文献   

17.
Diamond like carbon (DLC) thin films were deposited on p-type silicon (p-Si), quartz and ITO substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at different substrate temperatures (RT ∼ 300 °C). Argon (Ar: 200 sccm) was used as carrier gas while acetylene (C2H2: 20 sccm) and nitrogen (N: 5 sccm) were used as plasma source. Analytical methods such as X-ray photoelectron spectroscopy (XPS), FT-IR and UV–visible spectroscopy were employed to investigate the structural and optical properties of the DLC thin films respectively. FT-IR spectra show the structural modification of the DLC thin films with substrate temperatures showing the distinct peak around 3350 cm 1 wave number; which may corresponds to the sp2 C–H bond. Tauc optical gap and film thickness both decreased with increasing substrate temperature. The peaks of XPS core level C 1 s spectra of the DLC thin films shifted towards lower binding energy with substrate temperature. We also got the small photoconductivity action of the film deposited at 300 °C on ITO substrate.  相似文献   

18.
Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144°. Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with λmax = 675 ± 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices.  相似文献   

19.
Ni–SiC composite thin films were successfully prepared via direct-current (DC) and ultrasonic pulse-current (UPC) deposition. The morphologies, mechanical properties, and corrosion properties of the films were investigated via atomic force microscopy, X-ray diffraction (XRD), Vickers hardness test, scanning electron microscope (SEM), cyclic polarization, and gravimetric analysis. The results show that the Ni–SiC composite thin films synthesized via UPC deposition possess a compact and exiguous surface morphology. The XRD results indicate that the average grain diameters of Ni and SiC in the UPC-deposited thin film are 63.6 and 38.5 nm, respectively. The maximum microhardness values for the DC- and UPC-deposited Ni–SiC composite thin films prepared are 871.7 and 924.3 HV, respectively. In the corrosion tests, the UPC-deposited films have a higher corrosion resistance than those prepared by DC deposition with the same SiC content.  相似文献   

20.
Diamond-like carbon (DLC) thin films were deposited on silicon and ITO substrates with applying different negative bias voltage by microwave surface wave plasma chemical vapor deposition (MW SWP-CVD) system. The influence of negative bias voltage on optical and structural properties of the DLC film were investigated using X-ray photoelectron spectroscopy, UV/VIS/NIR spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Optical band gap of the films decreased from 2.4 to 1.7 with increasing negative bias voltage (0 to − 200 V). The absorption peaks of sp3 CH and sp2 CH bonding structure were observed in FT-IR spectra, showing that the sp2/sp3 ration increases with increasing negative bias voltage. The analysis of Raman spectra corresponds that the films were DLC in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号