首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon nanotube (CNT) films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i) mirror polished, (ii) catalyst patterned, (iii) mechanically polished having pits of varying size and shape, and (iv) electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure) structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.  相似文献   

2.
Wan-Yu Wu  F.-Y. Teng  Jyh-Ming Ting 《Carbon》2011,(13):4589-4594
We report the positive effect of an Al underlayer for enhancing the growth of carbon nanotubes (CNTs) on Si substrates. The catalyst used for the growth was a sputter-deposited Fe–Si thin film and the growth temperature was 370 °C. The morphology, composition, microstructure, and crystalline structure of the Fe–Si films with and without an Al underlayer having different thicknesses were examined. Correlation between the Al underlayer thickness and the film characteristics is made. The effect of Al thickness on the growth of CNTs is discussed. It was found that the maximum growth increase occurs at an Al thickness of 4 nm, for which the growth is increased by 220%.  相似文献   

3.
A special nanostructure was formed by the growth of carbon nanotubes (CNTs) between a substrate and a thin bi-metallic catalyst layer using a thermal chemical vapor deposition process. The catalyst layer is composed of adjacently disposed Cr and Ni phases formed prior to CNT growth. The Cr/Ni layer serves as a bi-metallic catalyst layer, which is pushed away from the substrate as a thin and continuous nanomembrane with the growth of CNTs. The self-assembled CNT–catalyst heterostructure possesses a smooth surface (RMS = 2.9 nm) with a metallic shine. Directly interlinked to the Cr/Ni layer, dense and vertically aligned multi-walled CNTs are found. Compared to conventional CNT films, the structure has significant advantages for CNT integration. From technology point of view, the structure allows further processing without impact on the CNTs as well as transfer of pristine vertically aligned CNTs to arbitrary substrates. Moreover, the as-grown CNT films provide an interface ideal for further electrical, thermal and mechanical contacting of CNT films. We present structural investigations of this special CNT–metal heterostructure. Furthermore, we discuss possible interface mechanisms during catalyst layer formation and CNT growth.  相似文献   

4.
Flexible, transparent, and conducting composite thin films, constructed from multi-walled carbon-nanotube-supported silver–platinum alloy nanoparticles (AgPt–MWCNT) on a flexible polyethylene terephthalate (PET) substrate through the combination of a two-step polyol process for synthesizing composites of carbon nanotubes (CNTs) and metallic nanoparticles (NPs) with an ultrasonic atomization-spin coating method for preparing thin films, have been fabricated. AgPt NPs with an average size of approximately 26 nm were uniformly attached to the sidewalls of MWCNTs to form an effective and strongly mechanical conductive network. These composites were then exposed to microwave plasma irradiation, which can lower the contact resistance between the metallic NPs and CNTs and reinforce the network bridges. The resulting AgPt–MWCNT–PET thin films exhibit improved optoelectronic and mechanical properties, and they possess a sheet resistance of 154 Ω/sq with a transmittance of 80% at 550 nm. These values are competitive with those of most other CNT-based films. Most importantly, the corresponding sheet conductivity does not decrease even after 500 bending cycles. Therefore, the as-produced AgPt–MWCNT–PET films may be direct alternatives to indium tin oxide and other transparent conducting oxide films.  相似文献   

5.
《Ceramics International》2023,49(15):25543-25548
Transparent conducting thin films have been widely used in lots of fields. The absence of high-performance hole-type transparent conducting thin films, however, seriously limits the wider applications. LaRhO3 as a type of perovskite material shows hole-type conduction with semiconductor-like properties and no investigations have been carried out about transparent conducting properties on LaRhO3 thin films. Here, LaRh1-xNixO3 (x = 0, 0.05, 0.1) thin films were firstly deposited by chemical solution deposition, showing epitaxial growth on single crystal SrTiO3 (001) substrates with the epitaxial relationship of LaRhO3(001)[110]||SrTiO3(001)[110]. With the doping of Ni element, the surface morphology became denser. Hall measurements confirmed that the hole concentration was enhanced with Ni doping, resulting in the decreased resistivity. Low resistivity of 17.3 mΩ cm at 300K was obtained for the LaRh0.9Ni0.1O3 thin films. The electrical transport mechanisms were investigated, showing thermal activation at high temperatures and variable range hopping model for the doped thin films at low temperatures. The transmittance within the visible range for all thin films was higher than 50%. The results will provide a feasible route to deposit hole-type transparent conducting LaRhO3-based thin films.  相似文献   

6.
Thin films of unmodified and nanoclay-modified polylactide/poly(butylene succinate) (PLA/PBS) blends were prepared on a glass substrate with a spin coater. The morphology and crystal growth behaviours for the films, crystallized at different temperatures, were visualized with atomic force microscope (AFM). AFM images showed that the size of the dispersed PBS phase was reduced on the addition of 2 wt% clay to the PLA/PBS blend, and the size of the dispersed phase increases with the further addition of clay. Transmission electron microscopy studies indicated that this behaviour was due to the preferential location of silicates in the PBS phase than in the PLA phase. A similar effect of clay to the blend thin films on the dispersed phase and the crystalline morphology were observed when annealed at 60 °C and 120 °C. However, at 60 °C the addition of clay to the blend quenched the growth of edge-on lamellae. The crystalline morphologies at 120 °C were dominated by edge-on lamellae grown around the PBS phase to form spherulites. Morphologies of thin films crystallized at 120 °C from melt were dominated by the flat-on lamellae, while the ones crystallized at 70 °C from melt were dominated by the edge-on lamellae. The degree of clay silicate dispersion in the blend matrix was characterized by X-ray diffraction. These results show how the crystallization temperatures and the addition of the clay particles influence the morphology of the thin films.  相似文献   

7.
Huiyao Wang  John J. Moore 《Carbon》2012,50(3):1235-1242
Using radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD), carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were synthesized at low temperature. Base growth vertical turbostratic CNFs were grown using a sputtered 8 nm Ni thin film catalyst on Si substrates at 140 °C. Tip growth vertical platelet nanofibers were grown using a Ni nanocatalyst in 8 nm Ni films on TiN/Si at 180 °C. Using a Ni catalyst on glass substrate at 180 °C a transformation of the structure from CNFs to CNTs was observed. By adding hydrogen, tip growth vertical multi-walled carbon nanotubes were produced at 180 °C using FeNi nanocatalyst in 8 nm FeNi films on glass substrates. Compared to the most widely used thermal CVD method, in which the synthesis temperature was 400–850 °C, RF-PECVD had a huge advantage in low temperature growth and control of other deposition parameters. Despite significant progress in CNT synthesis by PECVD, the low temperature growth mechanisms are not clearly understood. Here, low temperature growth mechanisms of CNFs and CNTs in RF-PECVD are discussed based on plasma physics and chemistry, catalyst, substrate characteristics, temperature, and type of gas.  相似文献   

8.
ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail.  相似文献   

9.
Carbon nanotubes (CNTs) have been produced on silicon wafer by filtered cathodic vacuum arc technique using cobalt-containing graphite targets followed by thermal chemical vapor deposition. The Co-containing amorphous carbon (a-C:Co) composite films have various contents of Co as a catalyst for CNTs growth. It is found that dense and random CNTs were grown on the a-C:Co composite film deposited using a 2 at.% Co-containing graphite target and nanoforest CNTs on the composite films using 5, 10 and 15 at.% Co-containing targets. The nanoforest CNTs using a 15 at.% Co-containing target have very good field emission properties with a low threshold field of 1.6 V/μm and a high and stable current density of 2.1 mA/cm2 at 3 V/μm, which may result from the smaller diameter of CNTs. It is found that the field emission properties of the CNTs are significantly affected by the diameter of CNTs rather than its orientation.  相似文献   

10.
A simple wet-deposition method for preparing patterned carbon nanotube (CNT) thin films is reported. Using electrophoretic deposition (EPD), CNTs were deposited over indium tin oxide (ITO) plates that had been patterned with a photoresist; consequently, CNTs covered not only the exposed ITO areas but also the photoresist areas because thinness of the photoresists could not prevent the transverse deposition of CNTs over the photoresist areas. The ultrasonic treatment for the samples removed only CNTs on the photoresist areas, resulting in the formation of patterned CNT thin films, because Ni metal formed during EPD connects CNTs to ITO plates.  相似文献   

11.
In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium bismuth niobate (BaBi2Nb2O9) thin films was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), atomic force microscopy (AFM) and dielectric properties. BaBi2Nb2O9 (BBN) thin films have been successfully prepared by the polymeric precursor methods and deposited by spin coating on Pt/Ti/SiO2/Si (1 0 0) substrates. The phase formation, the grain size and morphology of the thin films were influenced by the addition of bismuth in excess. It was observed that the formation of single phase BBN for films was prepared with excess of bismuth up to 2 wt%. The films prepared with excess of the bismuth showed higher grain size and better dielectric properties. The 2 wt% bismuth excess BBN thin film exhibited dielectric constant of about 335 with a loss of 0.049 at a frequency of 100 kHz at room temperature.  相似文献   

12.
RF-magnetron sputtering has been carried out at room temperature to deposit vanadium-doped zinc oxide (VZO) nanostructured thin films onto flexible PEN substrates. The sputtering targets of compacted VZO nanopowder have been prepared using a rapid and inexpensive Sol-Gel synthesis followed by a supercritical drying process. Structural and morphological study of VZO particles in the targets has been carried out via X-ray diffraction and Transmission Electron Microscopy (TEM). The nanostructured thin films have been characterized to analyze the structural, morphological, electrical and optical properties as a function of vanadium content from 0 to 4 at.%. Structural characterization of VZO thin films revealed that the deposited thin films have been grown preferentially along (002) and exhibit the hexagonal wurtzite structure. The cross-sectional and microstructural analysis performed by Scanning Electron Microscopy (SEM) confirms the columnar growth of nanostructures. The deposited thin films exhibit transparent behavior with transmission >70% in the visible region. It has been observed that nanostructured thin films with vanadium content of 2% have demonstrated the lowest resistivity (6.71 × 10?4 Ω cm) with Hall mobility of 10.62 cm2 V?1 s?1. The deposited vanadium doped nanostructured thin films would have potential applications in electronic and optoelectronic devices.  相似文献   

13.
Transparent amorphous and crystalline nanostructured zinc oxide (ZnO) thin films were prepared by electrospray deposition technique on a glass substrate at 250 °C using zinc nitrate and ammonia as the precursors. The structural morphology and optical properties of the thin films were evaluated and also the effect of formation rate of basic generating species on the morphology of the thin films was discussed. Optical studies indicated that all of the thin films have a near band edge emission at 374 nm and a band gap of 3.32 eV. In addition, the films have an emission at 393 nm corresponding to ultra violet (UV) transmittance. However, the amorphous thin films have oxygen trap peak at 430 nm and two green transmittance peaks at 485 nm and 530 nm which are absent in the 0.1 molar nanostructured sample. The crystallite size of the thin films which calculated from XRD patterns via Debye–Scherrer's formula was around 30 nm.  相似文献   

14.
A simple electrochemical process has been demonstrated to grow highly oriented copper(I) bromide thin films on indium-doped tin oxide (ITO) glass through reducing CuBr2 in aqueous solutions at room temperature. The copper(I) bromide thin films grow preferential orientation along the 〈1 1 1〉 crystal axis from the X-ray diffraction patterns. The orientation growth of the CuBr thin films is little affected by the solution pH and applied potentials. The possible mechanism of the orientation growth has been discussed, and the surface energy of different crystal plane of CuBr crystal is believed to play an important role to control the orientation growth of the CuBr thin films. The oriented films exhibit intense free-exciton photoluminescence at room temperature.  相似文献   

15.
Tin telluride (SnTe) thin films were deposited onto Au(1 1 1) substrates from an aqueous solution containing SnCl2, TeO2, and C6H5Na3 at room temperature (25 °C) for the first time via electrodeposition route. The electrodeposition of the thin films was studied using cyclic voltammetry, compositional, structural, optical measurements and surface morphology. It was found that the stoichiometric SnTe thin films could be obtained at −0.50 V. The as-deposited thin films were crystallized in the preferential orientation along the (2 2 0) plane. SEM investigations indicated that the shape of thin films could be altered from a spherical particle to a dendritic crystal by increasing the deposition potential. The growth of the dendritic films proceeds via formation of nanoparticles and growth of dendritic crystals on these nanoparticles. The optical absorption studies as a function of deposition time indicated that the band gap of the SnTe thin film increases as the deposition time decreases.  相似文献   

16.
Direct growth of carbon nanotubes (CNTs) on Inconel 600 sheets was investigated using plasma enhanced hot filament chemical vapor deposition in a gas mixture of methane and hydrogen. The Inconel 600 sheets were oxidized at different temperatures (800 °C, 900 °C, 1000 °C, and 1100 °C) before CNT deposition. The structure and surface morphology of the pre-treated substrate sheets and the deposited CNTs were studied by scanning electron microscopy (SEM) and X-ray diffraction. The field electron emission (FEE) properties of the CNTs were also tested. The SEM results show that well aligned CNTs have been grown on the pre-treated Inconel sheets without addition of any catalysts and the higher treatment temperature resulted in CNTs with better uniformity, indicating that the oxidation pre-treatment of the substrate is effective to enhance the CNT growth. FEE testing shows that CNTs with better height uniformity exhibit better FEE characteristics.  相似文献   

17.
A dense, micron-tall layer of carbon nanofibers (CNFs) was grown above a layer of carbon nanotubes (CNTs) during the same synthesis using a thick cobalt catalyst (15 nm). The CNFs had large diameters (100 nm) and were amorphous while the CNTs had small diameter (10–20 nm) and were crystalline. Base growth mechanism was at play for both the nanofibers and the nanotubes. High-resolution transmission electron microscopy characterization suggested that the main mechanisms leading to the growth of the two structures were based on the dewetting of the catalyst layer and its subsequent alloying with the Ta underlayer. We can extend these principles to grow diverse carbon nanostructures during the same synthesis using appropriate multilayer thin films for different applications, especially for electrochemical cells and supercapacitors.  相似文献   

18.
《Ceramics International》2017,43(4):3562-3568
In this article, the gas sensing properties of Al-doped ZnO thin films have been reported where the nanocrystalline ZnO based thin films were well deposited by a simple and inexpensive ‘chemical spray pyrolysis (CSP)’ technique. Films have been found to be uniform, pinhole free and well adherent to the substrate. The morphology, structures, and surface roughness of the deposited Al-doped ZnO thin films were studied by various types of characterization techniques. In addition, the authors have observed that the sensor response and selectivity towards CO gas is improved by the Al doping at a low operating temperature. XRD results showed that the obtained films are nanocrystalline in nature with hexagonal wurtzite phase. Further, the annealed films were used for detection of CO in the air and maximum response was observed at 175 °C. The improvement in sensor response of Al-doped ZnO thin films to CO gas attributed to the defect chemistry, crystallite size and surface roughness.  相似文献   

19.
《Ceramics International》2022,48(4):5066-5074
We studied the morphological nature of various thin films such as silicon carbide (SiC), diamond (C), germanium (Ge), and gallium nitride (GaN) on silicon substrate Si(100) using the pulsed laser deposition (PLD) method and Monte Carlo simulation. We, for the first time, systematically employed the visibility algorithm graph to meticulously study the morphological features of various PLD grown thin films. These thin-film morphologies are investigated using random distribution, Gaussian distribution, patterned heights, etc. The nature of the interfacial height of individual surfaces is examined by a horizontal visibility graph (HVG). It demonstrates that the continuous interfacial height of the silicon carbide, diamond, germanium, and gallium nitride films are attributed to random distribution and Gaussian distribution in thin films. However, discrete peaks are obtained in the brush and step-like morphology of germanium thin films. Further, we have experimentally verified the morphological nature of simulated silicon carbide, diamond, germanium, and gallium nitride thin films were grown on Si(100) substrate by pulsed laser deposition (PLD) at elevated temperature. Various characterization techniques have been used to study the morphological, and electrical properties which confirmed the different nature of the deposited films on the Silicon substrate. Decent hysteresis behavior has been confirmed by current-voltage (IV) measurement in all the four deposited films. The highest current has been measured for GaN at ~60 nA and the lowest current in SiC at ~30 nA level which is quite low comparing with the expected signal level (μA). The HVG technique is suitable to understand surface features of thin films which are substantially advantageous for the energy devices, detectors, optoelectronic devices operating at high temperatures.  相似文献   

20.
In this paper, we report the characteristics of carbon nanotubes grown on a novel Fe–Si thin film catalysts at a substrate temperature of 370 °C. The catalyst thin films were prepared using a sputter deposition method. The growth of carbon nanotubes was performed in a microwave plasma chemical vapor deposition (MPCVD) reactor under various methane to hydrogen ratios and different growth times. We have shown that the CNTs grown at a temperature as low as 370 °C and a very high growth rate of 13 μm/min exhibit microstructures as good as those obtained at higher temperatures and lower growth rates. We have also provided evidences to support the assumption and augment made in a previously reported growth mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号