首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic sorption onto maghemite potentially contributes to arsenic retention in magnetite-based arsenic removal processes because maghemite is the most common oxidation product of magnetite and may form a coating on magnetite surfaces. Such a sorption reaction could also favor arsenic immobilization at redox boundaries in groundwaters. The nature of arsenic adsorption complexes on maghemite particles, at near-neutral pH under anoxic conditions, was investigated using X-ray absorption fine structure (XAFS) spectroscopy at the As K-edge. X-ray absorption near edge structure spectra indicate that As(III) does notoxidize after 24 h in any of the sorption experiments, as already observed in previous studies of As(III) sorption on ferric (oxyhydr)oxides under anoxic conditions. The absence of oxygen in our sorption experiments also limited Fenton oxidation of As(III). Extended XAFS (EXAFS) results indicate that both As(III) and As(V) form inner-sphere complexes on the surface of maghemite, under high surface coverage conditions (approximately 0.6 to 1.0 monolayer), with distinctly different sorption complexes for As(III) and As(V). For As(V), the EXAFS-derived As-Fe distance (approximately 3.35 +/- 0.03 A) indicates the predominance of single binuclear bidentate double-corner complexes (2C). For As(III), the distribution of the As-Fe distance suggests a coexistence of various types of surface complexes characterized by As-Fe distances of approximately 2.90 (+/-0.03) A and approximately 3.45 (+/-0.03) A. This distribution can be interpreted as being due to a dominant contribution from bidentate binuclear double-corner complexes (2C), with additional contributions from bidentate mononuclear edge-sharing (2E) complexes and monodentate mononuclear corner-sharing complexes (1V). The present results yield useful constraints on As(V) and As(III) adsorption on high surface-area powdered maghemite, which may help in modeling the behavior of arsenic at the maghemite-water interface.  相似文献   

2.
Nowadays there is a great concern on the study of new adsorbent materials for either the removal or fixation of arsenic species because of their high toxicity and the health problems associated to such substances. The present paper reports a basic study of the adsorption of arsenic inorganic species from aqueous solutions using an open-celled cellulose sponge with anion-exchange and chelating properties (Forager Sponge). Consequences of preloading the adsorbentwith Fe(III) to enhance the adsorption selectivity are discussed and compared with the nonloaded adsorbent properties. The interactions of arsenic species with the Fe(III)-loaded adsorbent are accurately determined to clarify the feasibility of an effective remediation of contaminated waters. Arsenate is effectively adsorbed by the nonloaded and the Fe(III)-loaded sponge in the pH range 2-9 (maximum at pH 7), whereas arsenite is only slightly adsorbed by the Fe(III)-loaded sponge in the pH range 5-10 (maximum at pH 9), being that the nonloaded sponge is unable to adsorb As(III). The maximum sorption capacities are 1.83 mmol As(V)/g (pH approximately 4.5) and 0.24 mmol As(lII)/g (pH approximately 9.0) for the Fe(III)-loaded adsorbent. This difference is explained in terms of the different acidic behavior of both arsenic species. The interaction of the arsenic species with the Fe(III) loaded in the sponge is satisfactorily modeled. A 1:1 Fe:As complex is found to be formed for both species. H2AsO4- and H3AsO3 are determined to be adsorbed on Fe(III) with a thermodynamic affinity defined by log K = 2.5 +/- 0.3 and log K = 0.53 +/- 0.07, respectively. As(V) is, thus, found to be more strongly adsorbed than As(III) on the Fe(III) loaded in the sponge. A significant enhancement on As(V) adsorption selectivity by loading Fe(III) in the sponge is observed, and the effectiveness of the Fe(III)-loaded sponge for the As(V) adsorption is demonstrated, even in the presence of high concentrations of interfering anions (chloride, nitrate, sulfate, and phosphate).  相似文献   

3.
Polymer inclusion membranes (PIMs) based on cellulose triacetate (CTA) and dibutyl butyl phosphonate (DBBP) were tested for arsenic(V) separation from H2SO4 for its recovery from copper electrolytes. Solvent extraction experiments allowed the determination of the As(V)-DBBP and H2SO4-DBBP complexes formed in the organic phase. Application of a transient model to membrane transport experiments in solutions containing only arsenic or H2SO4 indicated that it occurred under a kinetically controlled regime by formation of H3AsO4[DBBP]2 and H2SO4[DBBP] species, respectively. When arsenic and H2SO4 are simultaneously present, the existence of a third species, H3AsO4[DBBP][H2SO4], explains well the fact that As(V) flux decreases and that H2SO4 flux increases. In both cases, a limiting 50% recovery value was obtained. However, active arsenic transport (>50%) is achieved if the H2SO4 concentration gradient is assured (e.g., using a triple-cell configuration). In this way, high arsenic recovery factors (90% in 800 min) were obtained with initial concentrations of 5000 mg/L As(V) and 220 g/L H2SO4. In all membrane systems tested, good As(V) selectivity over copper (up to 30000 mg/L) was attained.  相似文献   

4.
The comprehensive characterization of As(V)-bearing iron minerals from the Gunma iron deposit, which were probably formed by biomineralization, was carried out by utilizing multiple synchrotron radiation (SR)-based analytical techniques at BL37XU at SPring-8. SR microbeam X-ray fluorescence (SR-mu-XRF) imaging showed a high level of arsenic accumulation in the iron ore as dots of ca. 20 microm. Based on SEM observations and SR X-ray powder diffraction (SR-XRD) analysis, it was found that arsenic is selectively accumulated in strengite (FePO4 x 2H2O) with a concentric morphology, which may be produced by a biologically induced process. Furthermore, the X-ray absorption fine structure (XAFS) analysis showed that arsenic in strengite exists in the arsenate (AsO4(3-)) form and is coordinated by four oxygen atoms at 1.68 angstroms. The results suggest that strengite accumulates arsenic by isomorphous substitution of AsO4(3-) for PO4(3-) to form a partial solid-solution of strengite and scorodite (FeAsO4 x 2H2O). The specific correlation between the distribution of As and biominerals indicates that microorganisms seems to play an important role in the mineralization of strengite in combination with an arsenic-accumulating process.  相似文献   

5.
Adsorption mechanism of arsenic on nanocrystalline titanium dioxide   总被引:6,自引:0,他引:6  
Arsenate [As(V)] and arsenite [As(III)] interactions at the solid-water interface of nanocrystalline TiO2 were investigated using electrophoretic mobility (EM) measurements, Fourier transform infrared (FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. The adsorption of As(V) and As(III) decreased the point of zero charge of TiO2 from 5.8 to 5.2, suggesting the formation of negatively charged inner-sphere surface complexes for both arsenic species. The EXAFS analyses indicate that both As(V) and As(III) form bidentate binuclear surface complexes as evidenced by an average Ti-As(V) bond distance of 3.30 A and Ti-As(III) bond distance of 3.35 A. The FTIR bands caused by vibrations of the adsorbed arsenic species remained at the same energy levels at different pH values. Consequently, the surface complexes on TiO2 maintained the same nonprotonated speciation at pH values from 5 to 10, and the dominant surface species were (TiO)2AsO2- and (TiO)2AsO- for As(V) and As(III), respectively. The surface configurations constrained with the spectroscopic results were formulated in the diffuse layer model to describe the adsorption behavior of As in the pH range between 4 and 12. The study suggests that TiO2 is an effective adsorbent for As removal due to its high surface area and the presence of high affinity surface hydroxyl groups.  相似文献   

6.
Little information is available concerning cosorbing oxyanion and metal contaminants in the environment, yet in most metal-contaminated areas, cocontamination by arsenate [AsO4, As(V)] is common. This study investigated the cosorption of As(V) and Zn on goethite at pH 4 and 7 as a function of final solution concentration. Complimentary extended X-ray absorption fine structure (EXAFS) spectroscopic data were collected at the As and Zn K-edges in order to glean information about the coordination environment of As and Zn at the goethite-water interface. Macroscopic sorption studies revealed that As(V) and Zn sorption on goethite increased in cosorption experiments beyond that suggested by single sorption isotherms. At pH 4 and 7, As(V) surface saturation was 3.2 and 2.2 micromol m(-2), respectively, and Zn surface saturation was absent at pH 4 and approximately 1.0 micromol m(-2) at pH 7. Arsenate sorption on goethite increased in the presence of Zn by 29% and by more than 500% at pH 4 and 7, respectively. In the presence of As(V), Zn sorption on goethite increased by 800 and 1300% at pH 4 and 7, respectively. More As(V) than Zn sorbed on goethite below surface saturation at pH 7. Above surface saturation, the Zn:As surface density ratio (SDR) remained constant at 0.91 +/- 0.03. At pH 4, the Zn:As SDR was less than 1 throughout the concentration range. Below As(V) surface saturation on goethite, As(V) formed bidentate binuclear bridging complexes on Fe and/or Zn octahedra, while Zn mainly formed edge-sharing complexes with Fe at the goethite surface. Above surface saturation, Zn was increasingly complexed by AsO4, gradually forming an adamite-like [Zn2(AsO4)OH] surface precipitate on goethite. Precipitated contaminants are more stable due to the limited dissolution kinetics of their solid phase. This study may therefore prove useful in remediation strategies of sites knowingly contaminated with oxyanions and metals.  相似文献   

7.
Struvite (MgNH(4)PO(4)·6H(2)O) precipitated from animal and human wastes may be a sustainable source of fertilizer. However, arsenic, present in some wastes, may be removed with struvite. Here the sorption of As with struvite during mineral formation at pH 8-11 was assessed. The yield of struvite increased with pH, and was highest at pH 10. For recovered struvite, XRD indicated reduced crystallinity and particle size, and FT-IR suggested less distortion of phosphate tetrahedra with increased pH. The As impurity did not affect the crystallinity or particle size, but did contribute to phosphate distortion. Sorption of As(V) was observed at all pH values, and was highest at pH 10. As(III) sorption was consistently lower than that of As(V), but increased with pH. XAFS suggested coprecipitation of As(V), and adsorption of As(III) as the potential sorption mechanisms. Solids derived from As(III) solutions exhibited dual mechanisms due to the partial oxidation of As(III) to As(V) in solution prior to sorption. For struvite recovery in the presence of As, optimizing the pH to improve yields may increase the As content. Adsorbed As(III) could be removed prior to fertilizer application, however coprecipitated As(V) will release upon mineral decomposition, linking its cycling to that of phosphorus.  相似文献   

8.
Adsorption-desorption of arsenic is the primary factor that impacts the bioavailability and mobility of arsenic in soils. To examine the characteristics of arsenate [As(V)] adsorption-desorption, kinetic batch experiments were carried out on three soils having different properties, followed by arsenic release using successive dilutions. Adsorption of As(V) was highly nonlinear, with a Freundlich reaction order N much less than 1 for Olivier loam, Sharkey clay, and Windsor sand. Adsorption of arsenate by all soils was strongly kinetic, where the rate of As(V) retention was rapid initially and was followed by gradual or somewhat slow retention behavior with increasing reaction time. Freundlich distribution coefficients and Langmuir adsorption maxima exhibited continued increase with reaction time for all soils. Desorption of As(V) was hysteretic in nature and is an indication of lack of equilibrium retention and/or irreversible or slowly reversible processes. A sequential extraction procedure provided evidence that a significant amount of As(V) was irreversibly adsorbed on all soils. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption successfully described the adsorption kinetics of As(V) for Olivier loam and Windsor sand. The model was also capable of predicting As(V) desorption kinetics for both soils. However, for Sharkey clay, which exhibited strongest affinity for arsenic, an additional irreversible reaction phase was required to predict As(V) desorption or release with time.  相似文献   

9.
Arsenic derived from natural sources occurs in groundwater in many countries, affecting the health of millions of people. The combined effects of As(V) reduction and diagenesis of iron oxide minerals on arsenic mobility are investigated in this study by comparing As(V) and As(III) sorption onto amorphous iron oxide (HFO), goethite, and magnetite at varying solution compositions. Experimental data are modeled with a diffuse double layer surface complexation model, and the extracted model parameters are used to examine the consistency of our results with those previously reported. Sorption of As(V) onto HFO and goethite is more favorable than that of As(III) below pH 5-6, whereas, above pH 7-8, As(II) has a higher affinity for the solids. The pH at which As(V) and As(III) are equally sorbed depends on the solid-to-solution ratio and type and specific surface area of the minerals and is shifted to lower pH values in the presence of phosphate, which competes for sorption sites. The sorption data indicate that, under most of the chemical conditions investigated in this study, reduction of As(V) in the presence of HFO or goethite would have only minor effects on or even decrease its mobility in the environment at near-neutral pH conditions. As(V) and As(III) sorption isotherms indicate similar surface site densities on the three oxides. Intrinsic surface complexation constants for As(V) are higher for goethite than HFO, whereas As(III) binding is similar for both of these oxides and also for magnetite. However, decrease in specific surface area and hence sorption site density that accompanies transformation of amorphous iron oxides to more crystalline phases could increase arsenic mobility.  相似文献   

10.
Arsenic speciation was determined by anion-exchange chromatography-inductively coupled plasma-mass spectrometry (AEC-ICP-MS) in groundwater samples collected from an aquifer impacted by methylated As pesticides. Besides the four expected arsenic species AsO3(3-), As4(3-), (CH3)AsO3(2-) and (CH3)2AsO2-, up to nine other arsenic species were encountered, which constituted a major fraction of the total arsenic concentration in most samples. We then synthesized the thio-derivatives of (CH3)AsO3(2-) and (CH3)2AsO2-, and characterized the formed products by electrospray-tandem mass spectrometry (ES-MS-MS). The presence of (CH3)AsO2S2-, (CH3)AsOS2(2-), (CH3)2AsOS- and (CH3)2AsS2-, was confirmed in the groundwater by retention time matching plus ES-MS-MS in collected AEC fraction, and the presence of the trivalent methylated arsenic species (CH3)AsO2(2-) was suggested based on retention time matching only. These arsenic species have not been observed in ambient waters before, and are likely to occur in many environments containing methylated arsenic species and reduced sulfur compounds. They can persist in some of these particular samples for periods of up to six months without preservation, but tend to convert into the corresponding pentavalent oxy-species. Acidification with HCI shifted speciation equilibria rapidly, and is thus unsuitable for stabilizing samples containing these novel arsenic species; cryofreezing or no sample preservation avoided this artifact.  相似文献   

11.
Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy for Bangladesh groundwater drinking supplies. EC is based on the rapid in situ dissolution of a sacrificial Fe(0) anode to generate iron precipitates with a high arsenic sorption affinity. We used X-ray absorption spectroscopy (XAS) to investigate the local coordination environment (<4.0 ?) of Fe and As in EC precipitates generated in synthetic Bangladesh groundwater (SBGW). Fe and As K-edge EXAFS spectra were found to be similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm(2)) used to generate samples. Shell-by-shell fits of the Fe K-edge EXAFS spectra indicated that EC precipitates consist of primarily edge-sharing FeO(6) octahedra. The absence of corner-sharing FeO(6) octahedra implies that EC precipitates resemble nanoscale clusters (polymers) of edge-sharing octahedra that efficiently bind arsenic. Shell-by-shell fits of As K-edge EXAFS spectra show that arsenic, initially present as a mixture of As(III) and As(V), forms primarily binuclear, corner-sharing As(V) surface complexes on EC precipitates. This specific coordination geometry prevents the formation of FeO(6) corner-sharing linkages. Phosphate and silicate, abundant in SBGW, likely influence the structure of EC precipitates in a similar way by preventing FeO(6) corner-sharing linkages. This study provides a better understanding of the structure, reactivity, and colloidal stability of EC precipitates and the behavior of arsenic during EC. The results also offer useful constraints for predicting arsenic remobilization during the long-term disposal of EC sludge.  相似文献   

12.
Solid-solution reactions in As(V) sorption by schwertmannite   总被引:1,自引:0,他引:1  
Sorption behavior of As(V) by synthesized schwertmannite was examined under pH 3.3 as a function of As(V) concentration in the initial solution and interpreted in term of solid-solution reactions. Results showed that schwertmannite released 0.62 mmol of SO4(2-) for every 1 mmol of H2AsO4- and 0.24 mmol of OH- that has been sorbed. As(V) replaced SO4 up to half of the total SO4 in schwertmannite. The quantitative relationship among the three chemical compositions indicated that As(V)-sorbed schwertmannite would behave as a solid solution between the As(V) free schwertmannite and schwertmannite containing the maximum level of As(V). The equilibrium constant for the anion exchange in the solid-solution reaction estimated from the reacted solution chemistry depicts the As(V) content found in precipitates formed in acid mine drainage and laboratory experiments. Although schwertmannite is metastable with respect to goethite, the transformation is significantly inhibited by sorption of As(V). The solid-solution reactions also explain the stabilization of schwertmannite by sorption of As(V).  相似文献   

13.
Observation of surface precipitation of arsenate on ferrihydrite   总被引:3,自引:0,他引:3  
X-ray diffraction and Raman spectroscopy were used in this study to characterize arsenate phases in the arsenate-ferrihydrite sorption system. Evidence has been obtained for surface precipitation of ferric arsenate on synthetic ferrihydrite at acidic pH (3-5) underthe following experimental conditions: sorption density of As/Fe approximately 0.125-0.49 and arsenic equilibrium concentration of <0.02-440 mg/L. Surface precipitation occurred under apparently undersaturated (in the bulk solution phase) conditions, and probably involved initial uptake of arsenate by surface complexation followed by transition to ferric arsenate formation on the surface as indicated by XRD analysis. At basic pH (i.e., pH 8), however, no ferric arsenate was observed in arsenate-ferrihydrite samples at a sorption density of As/Fe approximately 0.125-0.30 and an arsenic equilibrium concentration of 2.0-1100 mg/ L. At pH 8, arsenate is sorbed on ferrihydrite predominantly via surface adsorption, and the XRD patterns resemble basically that of ferrihydrite.  相似文献   

14.
Arsenate adsorption mechanisms at the allophane-water interface   总被引:1,自引:0,他引:1  
We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As-(V)]0 from 50 to 1000 microM (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline Al-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As-(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO4(2-)) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The inner-sphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments.  相似文献   

15.
Zerovalent iron filings have been proposed as a filter medium for removing arsenic compounds from potable water supplies. This research investigated the kinetics of arsenate removal from aqueous solutions by zerovalent iron media. Batch experiments were performed to determine the effect of the iron corrosion rate on the rate of As(V) removal. Tafel analyses were used to determine the effect of the As(V) concentration on the rate of iron corrosion in anaerobic solutions. As(V) removal in column reactors packed with iron filings was measured over a 1-year period of continuous operation. Comparison of As(V) removal by freely corroding and cathodically protected iron showed that rates of arsenate removal were dependent on the continuous generation of iron oxide adsorption sites. In addition to adsorption site availability, rates of arsenate removal were also limited by mass transfer associated with As(V) diffusion through iron corrosion products. Steady-state removal rates in the column reactor were up to 10 times faster between the inlet-end and the first sampling port than between the first sampling port and the effluent-end of the column. Faster removal near the influent-end of the column was due to a faster rate of iron oxidation in that region. The presence of 100 microg/L As(V) decreased the iron corrosion rate by up to a factor of 5 compared to a blank electrolyte solution. However, increasing the As(V) concentration from 100 to 20,000 microg/L resulted in no further decrease in the iron corrosion rate. The kinetics of arsenate removal ranged between zeroth- and first-order with respect to the aqueous As(V) concentration. The apparent reaction order was dependent on the availability of adsorption sites and on the aqueous As(V) concentration. X-ray absorption spectroscopy analyses showed the presence of iron metal, magnetite (Fe3O4), an Fe(III) oxide phase, and possibly an Fe(II,III) hydroxide phase in the reacted iron filings. These mixed valent oxide phases are not passivating and permit sustained iron corrosion and continuous generation of new sites for As(V) adsorption.  相似文献   

16.
A clearer understanding of arsenic (As) retention and transport in forest soils impacted by copper smelter emissions may reduce risks to human health and provide insight into As behavior in the vadose zone. On Vashon-Maury Island in Puget Sound, As is predominantly associated with the fine (< 63 microm) fraction of surficial soils. X-ray diffraction of oriented samples from the < 2 microm size fraction indicate that clinochlore isthe dominant phyllosilicate. X-ray absorption spectroscopy (XAS) was employed to examine As oxidation state and local coordination environment in impacted soil samples. Arsenic is present as As(V) in tetrahedral coordination with oxygen, associated with aluminum (Al) octahedra in bidentate binuclear (bridging) structures with As-Al distances of 3.15 - 3.16 angstroms. Including multiple scattering (MS) paths derived from the arsenate tetrahedron in esperanzaite significantly improved the match between XAS fine structure (EXAFS) data and models generated from theoretical phase and amplitude functions. The data are interpreted to indicate arsenate adsorption onto poorly crystalline aluminum oxyhydroxides and/or the edges of clinochlore interlayer hydroxyl sheets with constrained geometries causing MS to be important This implies that As initially released from the smelter as particulate As(III) and As(V) oxides was oxidized, dissolved, and adsorbed onto soil minerals and colloids; no evidence for relic arsenic oxide was observed. Physical transport of arsenic oxide particles and As adsorbed on soil colloids may account for limited downward migration of As within the soil column. The oxidizing and mildly acidic pH conditions in the upper vadose zone promote stable sorption complexes; barring substantial changes in soil chemistry, As is not expected to experience significant mobilization.  相似文献   

17.
The removal of As(V), one of the most poisonous groundwater pollutants, by synthetic nanoscale zero-valent iron (NZVI) was studied. Batch experiments were performed to investigate the influence of pH, adsorption kinetics, sorption mechanism, and anionic effects. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy were used to characterize the particle size, surface morphology, and corrosion layer formation on pristine NZVI and As(V)-treated NZVI. The HR-TEM study of pristine NZVI showed a core-shell-like structure, where more than 90% of the nanoparticles were under 30 nm in diameter. M?ssbauer spectroscopy further confirmed its structure in which 19% were in zero-valent state with a coat of 81% iron oxides. The XRD results showed that As(V)-treated NZVI was gradually converted into magnetite/maghemite corrosion products over 90 days. The XPS study confirmed that 25% As(V) was reduced to As(III) by NZVI after 90 days. As(V) adsorption kinetics were rapid and occurred within minutes following a pseudo-first-order rate expression with observed reaction rate constants (Kobs) of 0.02-0.71 min(-1) at various NZVI concentrations. Laser light scattering analysis confirmed that NZVI-As(V) forms an inner-sphere surface complexation. The effects of competing anions revealed that HCO3-, H4SiO4(0), and H2PO4(2-) are potential interfering agents in the As(V) adsorption reaction. Our results suggest that NZVI is a suitable candidate for As(V) remediation.  相似文献   

18.
The mechanisms whereby As(III) and As(V) in aqueous solution (pH 5.5-6.5) interact with the surfaces of goethite, lepidocrocite, mackinawite, and pyrite have been investigated using As K-edge EXAFS and XANES spectroscopy. Arsenic species retain original oxidation states and occupy similar environments on the oxyhydroxide substrates, with first-shell coordination to four oxygens at 1.78 A for As(III) and 1.69 A for As(V). In agreement with other workers, we find that inner sphere complexes form, apparently involving bidentate (bridging) arsenate or arsenite. Interaction of As(III) and As(V) with the sulfide surfaces shows primary coordination to four oxygens (As-O: 1.69-1.76 A) with further sulfur (approximately 3.1 A) and iron (3.4-3.5 A) shells suggesting outer sphere complexation. Arsenic species were also coprecipitated with mackinawite (pH 4.0), and these samples were further studied following oxidation. At high As(III) or As(V) concentrations, arsenate or arsenite species form, probably as sorption complexes, along with poorly crystalline arsenic sulfide (the only product at low As(V) concentrations). All oxidized samples show primary coordination to four oxygens at 1.7 A, indicating As(V); these arsenates may show both outer sphere complexation with residual mackinawite and inner sphere complexation with new oxyhydroxides. These experiments help to clarify our understanding of As mobility in near-surface environments.  相似文献   

19.
Arsenic mobility in natural environments is controlled primarily by sorption onto metal oxide surfaces, and the extent of this sorption may be influenced strongly by the presence of other dissolved substances that interact with surfaces or with arsenic itself. Natural organic matter (NOM), a prevalent constituent of natural waters, is highly reactive toward both metals and surfaces and is thus a clear candidate to influence arsenic mobility. The objectives of this study were therefore to reveal the influences of diverse NOM samples on the sorption of arsenic onto hematite, a model metal oxide, as well as to reveal influences of arsenic on the sorption of NOM, using conditions and concentrations relevant to natural freshwater environments. Of the six NOM samples tested, four formed aqueous complexes with arsenate and arsenite. The extent of complexation varied with the NOM origin and, in particular, increased with the cationic metal (primarily Fe) content of the NOM sample. In addition, every NOM sample showed active redox behavior toward arsenic species, indicating that NOM may greatly influence redox as well as complexation speciation of arsenic in freshwater environments. When NOM and As were incubated together with hematite, NOM dramatically delayed the attainment of sorption equilibrium and diminished the extent of sorption of both arsenate and arsenite. Consistent with this result, when NOM and As were introduced sequentially, all NOM samples displaced sorbed arsenate and arsenite from hematite surfaces, and arsenic species similarly displaced sorbed NOM from hematite in significant quantities. Competition between NOM and As for sorption thus appears to be a potentially important process in natural waters, suggesting that NOM may play a greater role in arsenic mobility than previously recognized. In addition, in all sorption experiments, arsenite was consistently desorbed or prevented from sorbing to a greater extent than arsenate, indicating that interactions with NOM may also partially explain the generally greater mobility of arsenite in natural environments.  相似文献   

20.
The highly ordered mesoporous silica media, SBA-15, was synthesized and incorporated with iron, aluminum, and zinc oxides using an incipientwetness impregnation technique. Adsorption capacities and kinetics of metal-impregnated SBA-15 were compared with activated alumina which is widely used for arsenic removal. Media impregnated with 10% of aluminum by weight (designated to Al10SBA-15) had 1.9-2.7 times greater arsenate adsorption capacities in a wide range of initial arsenate concentrations and a 15 times greater initial sorption rate at pH 7.2 than activated alumina. By employing one- and two-site models, surface complexation modeling was conducted to investigate the relationship between the aluminum oxidation states in different media and adsorption behaviors shown by adsorption isotherms and kinetics since the oxidation phase of aluminum incorporated onto the surface of SBA-15 was Al-O, which has a lower oxidation state than activated alumina (Al2O3). Surface complexation modeling results for arsenate adsorption edges conducted with different pH indicated thatthe monodentate complex (SAsO(4)2-) was dominant in Al10SBA-15, while bidentate complexes (XHAsO4 and XAsO4-) were dominant in activated alumina at pH 7.2, respectively. In kinetic studies at pH 7.2 + 0.02, Al10SBA-15 had only a fast-rate step of initial adsorption, while activated alumina had fast- and slow-rate steps of arsenate adsorption. Therefore, it can be inferred that the monodentate arsenate complex, predominant in Al10SBA-15, leads to faster adsorption rates than bidentate arsenate complexes favored with activated alumina. An arsenate adsorption behavior and arsenate surface complexation were thought to be well explained by aluminum oxidation states and surface structural properties of media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号