首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated a possible method of synthesizing carbon-free, nano-silicon nitride-silicon carbide (Si3N4/SiC) powders from the waste silica fume for the first time, using the integrated mechanical and thermal activation (IMTA) process. This novel process results in the formation of nano-Si3N4/SiC powders at 1465 °C with crystallite sizes as small as 45 nm. In order to synthesize carbon-free nano-Si3N4/SiC powders, two different approaches, one using the H2 gas and the other using air, have been studied for their effectiveness in removing the free carbon present. It is found that the H2 treatment is not very effective although both Si3N4 and SiC are stable during the H2 treatment. In contrast, removing the free carbon using air is effective, and the limited oxidation of nano-Si3N4 and SiC can be achieved if the air treatment is terminated soon after the free carbon is eliminated. This study has provided a clear pathway and understanding for effectively synthesizing carbon-free, nano-Si3N4/SiC powders from the silica fume.  相似文献   

2.
IR pulsed laser radiation in air was applied to Si3N4 and Invar to obtain reliable Si3N4/Si3N4 and Si3N4/Invar adhesive bonded components. The laser pre-treatment produced a homogeneous nanostructured oxide layer on the surfaces, which effectively increased the adhesion at the adhesive/adherends interface and led to cohesive failure in the joining material. The mechanical strength of Si3N4/ Si3N4 and Si3N4/Invar joined components was measured, with and without laser nanostructuring, before and after thermal cycling from room temperature to 50?K, and it resulted that the exposure to extremely low temperatures did not affect the mechanical integrity of the joints. It was also demonstrated that this laser pre-treatment did not alter the mechanical properties of the ceramic substrate.  相似文献   

3.
以Si3N4和BN为原料,叔丁醇为溶剂,SiO2、Y2O3和Al2O3为烧结助剂,采用凝胶注模成型工艺制备具有高强度、低介电常数多孔Si3N4/BN复合陶瓷。研究了Y2O3和Al2O3含量对多孔陶瓷气孔率、孔径分布、物相组成、显微结构、抗弯强度和介电常数的影响。结果表明:通过调节Y2O3和Al2O3含量,多孔Si3N4/BN复合陶瓷的气孔率由55%增加到68%,气孔尺寸呈单峰分布,平均孔径为0.89~1.02μm;抗弯强度和相对介电常数随Y2O3和Al2O3含量的增加而单调增大,抗弯强度和相对介电常数的变化范围分别为29.9~60.9 MPa和2.30~2.85;通过调节Y2O3和Al2O3含量调控气孔率,能够获得介电性能和力学性能可调的高性能透波材料。  相似文献   

4.
Difficulties in sintering refractory ceramics limit their potential high-demanding applications. Selective laser sintering/melting of ceramics is extremely challenging due to poor sinterability of refractories caused by a low thermal shock resistance and an insufficient electron conductivity blocking absorption of laser electron beam energy, etc. Here, we propose a new approach to fabricate Si3N4-based complex geometry parts by selective laser sintering. This is a two-step approach including (i) selective laser sintering of silicon powder providing a needed shape, and (ii) nitridation of the as-shaped silicon parts aimed at fabrication of the Si3N4 component. Parametric study of the process has been performed for optimization of the sintering parameters, such as laser current, point distance and exposure time. The silicon component of full Archimedes density, 12?GPa Vickers hardness and 432?MPa compressive strength has been produced by SLS technique. Effect of different catalysts (Ni-, Cr-, Co-based) on the nitridation of the shaped silicon parts has been thoroughly studied. The conversion degree of nitridation reaches 50% with Ni-based catalyst subjecting growth of Si3N4 nanofibers on the surface of the component.  相似文献   

5.
In the present study, in-situ mullite/Si3N4 composites were prepared successfully by reaction spark plasma sintering. For this purpose, 5, 10 and 15?wt% of Si3N4 were added to stoichiometric mullite made of mechanically milled mixture of alumina and kaolin clay to investigate the effect of reinforcement content on the final properties of the prepared composites. The sintering processes were performed at 1400?°C under the initial and final applied pressures of 10 and 30?MPa and the vacuum condition of 17?Pa. The XRD patterns revealed the mullite and Si3N4 peaks as the dominant crystalline phases. Microstructural investigations demonstrated a uniform distribution of Si3N4 inside mullite matrix for the composites containing 5 and 10?wt% of the reinforcement particles. Meanwhile, some agglomerates of Si3N4 were observed in the microstructure of the mullite-15?wt%Si3N4 composite. Moreover, no evidence of reaction between the starting materials was detected through XRD and FESEM analyses. The highest values of hardness, bending strength, and fracture toughness obtained for the composite containing 15?wt% of Si3N4 were 19.14?GPa, 481?MPa and 3.85?MPa?m?1/2, respectively. The fracture toughness mechanisms were detected as crack branching, breaking and deflection, as well as particles pulling-out, all of which were observed in the mullite-15?wt%Si3N4 composite.  相似文献   

6.
Si3N4 ceramics modified with SiC nanofibers were prepared by gel casting aiming to enhance the dielectric and microwave absorption properties at temperatures ranging from 25?°C to 800?°C within X-band (8.2–12.4?GHz). The results indicate that the complex permittivity and dielectric loss are significantly increased with increased weight fraction of SiC nanofibers in the Si3N4 ceramics. Meanwhile, both complex permittivity and dielectric loss of SiC nanofibers modified Si3N4 ceramics are obviously temperature-dependent, and increase with the higher test temperatures. Increased charges mobility along conducting paths made of self-interconnected SiC nanofibers together with multi-scale net-shaped structure composed of SiC nanofibers, Si3N4 grains and micro-pores are the main reason for these enhancements in dielectric properties. Moreover, the calculated microwave absorption demonstrates that much enhanced microwave attenuation abilities can be achieved in the SiC nanofibers modified Si3N4 ceramics, and temperature has positive effects on the microwave absorption performance. The SiC nanofibers modified Si3N4 ceramics will be promising candidates as microwave absorbing materials for high-temperature applications.  相似文献   

7.
We reported an oscillatory pressure sintering (OPS) process to consolidate Si3N4-SiCw composites. For comparison, the composites were also prepared by hot pressing (HP) method. The specimen by OPS process reveals an accelerated rate of grain growth in the c axial direction and thus an increased average aspect ratio compared with the specimen by HP process. The oscillatory pressure also performs a positive impact on the Si3N4-SiCw composites as the bulk density of the OPS specimen increases to 3.270?g?cm?3 accompanied with higher fracture strength and hardness of 1133?MPa and 16.1?GPa, respectively, compared with those of the HP specimen. Significantly, the increased fracture toughness and Weibull modulus found in the OPS specimen indicate toughening effects and material reliability are improved aided by the oscillatory pressure. Current results suggest OPS to be a promising technique for preparing highly densified Si3N4-SiCw composites with enhanced mechanical properties.  相似文献   

8.
Si3N4 ceramic was successfully joined to itself with in-situ formed Yb-Si-Al oxynitride glass interlayer. The joints were composed of three parts: (I) Si3N4 matrix, (II) oxynitride glass interlayer in which hexagonal or fine elongated β-sialon grains and a few ball-like β-Si3N4 grains exist, and (III) diffusion zone in Si3N4 matrix containing a thin dark layer and a ~ 25?µm thick bright layer. The seam owned similar microstructure to matrix and was inosculated with the matrix as a whole. The strength of the joint tended to increase with the increase of bonding temperature and reached the value of 225?MPa, when the joints were prepared at 1600?°C for 30?min under a pressure of 1.5?MPa. The high-temperature strength remained 94.7% and 75.2% of R.T. strength when the joints were tested at 1000?°C and 1200?°C, respectively. It may be contributed to the high softening temperature of the Yb-Si-Al oxynitride glass phase formed in the seam. Even suffered to the air exposure for 10?h at 1200?°C, the residual strength of the joints was still 143?MPa, attributed to the existence of YbAG phase.  相似文献   

9.
A composite technique was chosen to fabricate Si3N4 ceramic turbine wheel based on modified investment casting (MIC), slip casting (SP) and mold constraint hot isostatic pressing (MCHIP) aided by a near-net dimension using the gypsum mold and multi-piece Y2O3 ceramic mold. The detailed fabrication processing of Si3N4 ceramic turbine wheel was described. And the flexural strength and fracture toughness after different work temperature and speed were discussed. The results showed that owing to occurrence of phase transformation and chemical reaction, excess temperature resulted in interface cracking and interface debonding, flexural strength and fracture toughness decrease. Thermal expansion and centrifugal force under excessive high speed brought many pores in the microstructure and resulted in crack initiation and crack propagation. The critical work temperature was 700?°C and critical work speed was 100,000 r/min, which were obtained from the test and simulation results.  相似文献   

10.
The level of residual stress and crack propagation in a new generation of laminates, based on silicon nitride (Si3N4) layer and a mixture of boron nitride (BN) and alumina (Al2O3) interlayer, was presented. The structure consists of alternated concentric rings of Si3N4 separated by the weak BN interlayer possessing no planes of easy crack propagation and fracture resistance much larger than that of any classical planar laminates. The results on direction of crack propagation and residual stress in relation to inter-layer composition, the number of layers, and their thickness are investigated and reported. The effect of residual stress on crack propagation was studied by using Vicksrs intentation. The highest compressive residual stress of ∼170 MPa was found in samples with five layers possessing an average layer thickness of ∼310 × 10−6 m.  相似文献   

11.
The effect of carboxymethyl cellulose (CMC) addition on the preparation of Si3N4 ceramic foam by the direct foaming method was investigated. The addition of CMC in the foam slurry can reduce the surface tension, increase the viscoelasticity of foams, and improve their stability and fluidity. The foam ceramics show low shrinkage during drying owing to the CMC and the gelation of acrylamide monomers. The surface structure of dried foam is uniform, and there are no macropores and cracks on the surface. The sintered Si3N4 foam ceramics have very uniform pore distribution with average pore size of about 16 μm; the flexure strength is as high as 3.8–77.2 MPa, and the porosity is about 60.6–82.1%.  相似文献   

12.
通过实验对两种不同结构在不同温度下的Si3N4/BN纤维独石陶瓷力学性能进行了研究。实验结果表明:单轴排布的纤维独石陶瓷具有明显的各向异性,0^0/90^0/0^0排布的纤维独石陶瓷宏观上各向异性不明显,单轴排布的纤维独石陶瓷随温度的升高,强度下降幅度较小,具有优异的高温力学性能,而按0^0/90^0/0^0排布的纤维独石陶瓷随温度的升高,表现为层状结构特征,容易开裂,实验通过扫描电镜SEM观察了材料的显微结构以及断口形貌,并探索了结构对性能影响的机理。  相似文献   

13.
The effect of Ti content on the wettability of AgCu-Ti filler on porous Si3N4 ceramic was studied by the sessile drop method. AgCu-2 wt% Ti filler alloy showed a minimum contact angle of 14.6° on porous Si3N4 ceramic during the isothermal wetting process. The mechanism of AgCu-Ti filler wetting on porous Si3N4 ceramic is clarified in this paper. Porous Si3N4 ceramic was brazed to TiAl alloy using AgCu-xTi (x = 0, 2 wt%, 4 wt%, 6 wt%, 8 wt%) filler alloy at 880 °C for 10 min. The effect of Ti content on the interfacial microstructure and mechanical properties of porous-Si3N4/AgCu-xTi/TiAl joints are studied. The typical interfacial microstructure of p-Si3N4/AgCu-Ti/TiAl joint is p-Si3N4/penetration layer (Ag(s,s)+Si3N4+TiN+Ti5Si3)/Ag(s,s)+Cu(s,s)+TiCu/AlCu2Ti/TiAl. The maximum shearing strength of the brazed joint was 14.17 MPa and fracture that occurred during the shearing test propagated in the porous Si3N4 ceramic substrate for the formation of the penetration layer.  相似文献   

14.
SiC whisker and Si3N4 whisker-reinforced Si3N4-SiC ((SiCw-Si3N4w)/(Si3N4-SiC)) composite was synthesized by 3D printing for the first time, by the combination of printed-Si-body nitridation and chemical vapor infiltration-SiC methods. The mechanical properties of the composite could be optimized through the adjustment of SiCw content and load direction. A SiCw content of 3?wt% was found to be the optimal scheme, and accordingly, the average bulk density increased by 22.4%, the bending strength increased by 63.6%, the compressive strength parallel to the printing layer increased by 404.8%, and the compressive strength perpendicular to the printing layer increased by 157.1%, compared with the bulks without whiskers. The enhanced mechanical performance was mainly attributed to the process of densification by CVI, and the effect of the homogeneous whiskers bridging, pull-out and deflecting crack to expend energy. The achieved indices meet the requirements for 3D-printed porous ceramic matrix composite targeted for commercial and military field applications.  相似文献   

15.
Porous Si3N4-bonded SiC ceramics with high porosity were prepared by the reaction-sintering method. In this process, Si3N4 was synthesized by the nitridation of silicon powder. The X-ray diffraction (XRD) indicated that the main phases of the porous Si3N4-bonded SiC ceramics were SiC, α-Si3N4, and β-Si3N4, respectively. The contents of β-Si3N4 were increased following the sintering temperature. The morphology of Si3N4 whiskers was investigated by scanning electron microscope (SEM), which was shown that the needle-like (low sintering-temperature) and rod-like (higher sintering-temperature) whiskers were formed, respectively. From low to high synthesized temperature, the highest porosity of the porous Si3N4 bonded SiC ceramic was up to 46.7%, and the bending strength was ~11.6?MPa. The α-Si3N4 whiskers were derived from the reaction between N2 and Si powders, the growth mechanism was proved by Vapor–Solid (VS). Meanwhile, the growth mechanism of β-Si3N4 was in accordance with Vapor–Solid–Liquid (VSL) growth mechanism. With the increase of sintering temperature, Si powders were melted to liquid silicon and the α-Si3N4 was dissolved into the liquid then the β-Si3N4 was precipitated successfully.  相似文献   

16.
Boron nitride/silicon nitride (BN/Si3N4) composite ceramics were fabricated via the in-situ nitridation of boron (B) and silicon (Si) powders in forming gas (95%N2/5%H2) at 1390?°C. The effect of the B content on the phase composition, microstructure, density/porosity, machinability as well as mechanical properties of nitridized BN/Si3N4 composite ceramics was investigated. The addition of B slightly increased the nitridation degree of the Si and B powders mixture, and improved the ratio of the β-Si3N4 phase significantly at low B contents. B powders may have acted as a nucleating agent to promote the formation of β-Si3N4 crystals. A core-shell Si3N4/BN structure was revealed by the TEM technique, and the number of BN layers increased with the increase of the B content. The in-situ BN formed by the nitridation of B played a similar role with the BN directly added in enhancing the machinability of the BN/Si3N4 composite ceramics. The method of the in-situ nitridation of B is also effective to prepare SiC fiber-reforced BN/Si3N4 ceramic matrix composites.  相似文献   

17.
In this study, Si3N4 ceramic composites were fabricated by using ball-milling, titration preparation and urea preparation methods, respectively. The effect of different preparation methods on microstructure and mechanical properties of the Si3N4 ceramic composites was investigated. Obviously, the Si3N4 ceramic composite prepared by the urea preparation method (U-SN sample) showed better sintering behavior and higher mechanical properties than that prepared by the other two methods. Compared with the Si3N4 ceramic composite by the titration preparation method (T-SN sample), we could avoid the complex titration process or uncontrollable pH value during the preparation process of the U-SN sample. Meanwhile, the coated Y-Al precursor layer in thickness of nanometers was more homogeneous than that prepared by the traditional titration method. B-SN represented the Si3N4 ceramic composite prepared by the ball-milling method. These samples were all sintered from room temperature to 1750 °C via hot-pressing sintering. The U-SN specimen showed the optimal flexural strength and fracture toughness of being 817 MPa and 6.90 MPa/m2, respectively, which could be attributed to its smallest grain size (0.46 µm) among these three samples.  相似文献   

18.
SiC, Si3N4 and SiO2 powders were ground by a vibration ball mill, the pot and balls of which were made of Si3N4 ceramics, in a purified methanol medium. The mean particle diameters of SiC and SiO2 powders were ca. 0.1 μm and thus ultrafine particles were manufactured. The increasing rate of specific surface area by fine grinding was largest on SiO2 powders, and the rate decreased gradually with an increase in grinding time. The specific surface area of Si3N4 powders increased proportionally with an increase in grinding time. The grindability was obtained in the following order: SiO2 > SiC > Si3N4. The ground SiC powders showed a large lattice strain and little fragmentation of crystallites. The strain and the crystallite size of ground Si3N4 powders were moderate.  相似文献   

19.
This study addresses itself in the performance of Si3N4 combustion synthesis, occurred in the presence of Si3N4 and NH4Cl powders in N2 atmosphere of 6 MPa. Mechanochemical activation of Si powder, achieved via high-energy attrition milling up to 24 h, increases the intensity and the efficiency of the reactions between Si and N2 as well as combustion temperature. Benign processing conditions, anticipated with lower mechanochemical activation of Si powder, low N2 pressures, and low combustion temperatures, favor formation of α-Si3N4.  相似文献   

20.
A process for the tape casting of silicon nitride ceramics has been developed and is described in detail. A solvent (ethanol) based recipe was developed using polyvinyl butyral and polyethylene glycol as the binder and plasticizer, respectively. The effect, of milling times, dispersant, solvent, plasticizer and binder contents were all investigated as well as that of the binder to plasticizer ratio. In addition the beneficial effect of multi-stage milling of the slip was evaluated. The removal of the ceramic tape from the carrier film is described. In addition the recipe and process used for producing silicon nitride tape was successfully adapted for the production of two different silicon nitride + titanium nitride composite based tapes. From the tapes produced it was possible to hot press dense multi-layer laminate structures with the thinnest layers being 45 μm thick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号