首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transition of diamond grain sizes from micron- to nano- and then to ultranano-size could be observed when hydrogen concentration is being decreased in the Ar/CH4 plasma. When grown in H2-rich plasma (H2 = 99% or 50%), well faceted microcrystalline diamond (MCD) surface with grain sizes of less than 0.1 μm are observed. The surface structure of the diamond film changes to a cauliflower-like geometry with a grain size of around 20 nm for the films grown in 25% H2-plasma. In the Ar/CH4 plasma, ultrananocrystalline diamond (UNCD) films are produced with equi-axed geometry with a grain size of 5-10 nm. The H2-content imposes a more striking effect on the granular structure of diamond films than the substrate temperature. The induction of the grain growth process, either by using H2-rich plasma or a higher substrate temperature increases the turn-on field in the electron field emission process, which is ascribed to the reduction in the proportion of grain boundaries.  相似文献   

2.
The influence of Ar addition to CH4/H2 plasma on the crystallinity, morphology and growth rate of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. X-Ray diffraction patterns indicate that diamond films of strong (111) and weak (400) texture are produced in these samples. Faceted diamond gradually turns into ballas-like diamond with graphitic inclusions when the Ar concentration increases to above 30 vol.%, as indicated by Raman spectra. As the Ar concentration goes above 90 vol.%, nanocrystalline diamond films are formed, characterized by a 1150-cm−1 peak in the Raman spectra and morphology observation. Diamond growth by CH3 or by C2 mechanism is proposed to interpret the change in the growth rate of diamond films with the variation of Ar content in the plasma.  相似文献   

3.
Radio frequency (RF) plasma etching of chemical vapor deposition (CVD) diamond film has been investigated in Ar/O2 plasmas, with an emphasis to elucidate the effects of reacting gas on the fabrication of diamond whiskers. Diamond whiskers were formed on diamond films pre-coated with Al. It was found that diamond whiskers preferentially formed at the diamond grain boundaries. The densities of diamond whiskers increased with O2 / Ar ratio. Whiskers obtained in pure O2 plasma etching were 50 nm in diameter and 1 μm in height. The etching rate was increased by mixing Ar with appropriate volume of O2. Al coated on the diamond surface reacted with O2 to form Al2O3, serving as mask to restrain the etching underneath. Raman spectroscopy measurement confirmed that the whiskers kept sp3 diamond bonding structure after RF plasma etching. The field emission characteristics of the whiskers were also inspected.  相似文献   

4.
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions.  相似文献   

5.
Oxidation kinetics of natural (110) diamond by oxygen and water were investigated using in situ Fizeau interferometry. Apparent activation energies of 53 and 26 kcal mol−1 were obtained for the etching of (110) type Ia diamond by O2 and H2O respectively. The etch rate was found to follow second-order kinetics with respect to O2 pressure in the pressure range 0.04–10 Torr. For water over the vapour pressure range 0.1–2 Torr, the reaction has a reaction order near unity. The diamond (110) surface was impervious to etching by molecular fluorine at all temperatures up to 1300 °C. Fluorine, hydrogen fluoride and water were found to inhibit the molecular oxygen etching of diamond. Below 900 °C, oxidation is inhibited by the addition of F2 and HF presumably by blocking reactive sites on the diamond surface through formation of C---F bonds. Above 900 °C, the fluorine is thought to desorb from the diamond (110) surface, rendering the surface susceptible to further oxidation. Addition of water below 800 °C was found to retard etching by molecular oxygen. This is attributed to the formation of C---OH bonds, analogous to C---F.  相似文献   

6.
The influence of electron temperature Te on the production of carbon-related materials was investigated in a hollow-type magnetron radio-frequency (RF) CH4/H2 plasma. Here, the electron temperature decreased along the plasma column. Since the dissociation of CH4 is determined by the electron energy in plasmas, the density ratio of radicals CH2/CH3 can be varied by the electron temperature. Therefore, the change of the electron temperature is quite important for controlling the characteristics of carbon-related materials. In the experiment, the production of diamond microparticles in low Te plasma was detected. On the other hand, thin carbon films consisting of graphitic carbons were observed in the high Te plasma. Therefore, it is shown that control of the electron temperature in the plasma has a key effect on the film quality.  相似文献   

7.
Incorporation of H2 species into Ar plasma was observed to markedly alter the microstructure of diamond films. TEM examinations indicate that, while the Ar/CH4 plasma produced the ultrananocrystalline diamond films with equi-axed grains (~ 5 nm), the addition of 20% H2 in Ar resulted in grains with dendrite geometry and the incorporation of 80% H2 in Ar led to micro-crystalline diamond with faceted grains (~ 800 nm). Optical emission spectroscopy suggests that small percentage of H2-species (< 20%) in the plasma leads to partially etching of hydrocarbons adhered onto the diamond clusters, such that the C2-species attach to diamond surface anisotropically, forming diamond flakes, which evolve into dendrite geometry. In contrast, high percentage of H2-species in the plasma (80%) can efficiently etch away the hydrocarbons adhered onto the diamond clusters, such that the C2-species can attach to diamond surface isotropically, resulting in large diamond grains with faceted geometry. The field needed to turn on the electron field emission for diamond films increases from E0 = 22.1 V/μm (Je = 0.48 mA/cm2 at 50 V/μm applied field) for 0% H2 samples to E0 = 78.2 V/μm (Je < 0.01 mA/cm2 at 210 V/μm applied field) for 80% H2 samples, as the grains grow, decreasing the proportion of grain boundaries.  相似文献   

8.
The effect of the N2 and H2 addition in Ar plasma on the characteristics of the UNCD films was systematically investigated. It is found that, while the N2/Ar plasma results in UNCD films with ultra-small grains (~ 5 nm), incorporation of H2 into the N2/Ar plasma increased monotonously the size of the grains. Moreover, the diamond grains synthesized in H2 free plasma are of equi-axed geometry and those grown in H2-containing plasma are of plate-like one. The optical emission spectroscopic investigation indicated that the increase in electron temperature due to the addition of H2 into Ar plasma is the main cause, altering the microstructure of the UNCD films. As the H2 content increases, the spherical diamond grains first agglomerated to form elongated grains, which coalesce to form dendrite clusters. The proportion of grain boundaries is thus decreased that increased the turn-on field necessary for inducing the electron field emission process.  相似文献   

9.
Parameters for the Wilson equation have been determined for 24 of the 28 binary pairs in the system: H2, N2, CO, CO2, CH4, H2S, CH3OH, and H2O. The data for eleven pairs were fit using the symmetric convention, with the remaining pairs satisfying the unsymmetric convention. Coefficients for the missing pairs could be estimated from Henry's Law constants. References have been included for the heat capacities of liquid methanol and carbon dioxide. Heats of mixing were also found in the literature. This information, plus readily available gas heat capacities, provides sufficient information to calculate multicomponent material and energy balances for the columns used in the separation of H2S and CO2 by cold methanol absorption.  相似文献   

10.
The oxygen reduction reaction (ORR) was studied on carbon dispersed Pt and Pt-Co alloyed nanocatalysts with high contents of Co in H2SO4 and H2SO4/CH3OH solutions. The characterization techniques considered were transmission electron microscopy (TEM), X-ray diffraction (XRD) and in situ X-ray absorption near edge structure (XANES). The electrochemical activity for the ORR was evaluated from steady state polarization measurements, which were carried out in an ultra thin layer rotating disk electrode. The results showed that with the increase of Co content, the nanoparticle size distributions become sharper and the mean particle diameters become smaller. XRD indicated low degree of alloy formation but significant phase segregation of Co was observed only for Pt-Co/C 1:3 and 1:5 (Pt:Co atomic ratios). The electrochemical measurements indicated that the four-electrons mechanism is mainly followed for the ORR on all materials and the electrocatalytic activities per gram of Pt is higher for the catalysts with higher Co contents. This was explained based on the XANES results which evidenced a decrease of the coverage of oxygenated Pt adsorbates due to the presence of Co. In the methanol-containing electrolyte, the Pt-Co/C 1:5 catalyst showed the highest performance. This was attributed to its low activity for the methanol oxidation due to the smaller probability for presenting three Pt neighboring Pt active sites.  相似文献   

11.
Carbon nanotubes (CNTs) were synthesized using CH4/H2 plasmas and plasmas simulated using a one-dimensional fluid model. The thinnest and longest CNTs with the highest number density were obtained using CH4/H2 = 27/3 sccm at 10 Torr. These conditions allowed CNTs to grow for 90 min without any meaningful loss of catalyst activity. However, an excess H2 supply to the CH4/H2 mixture plasma made the diameter distribution of the CNTs wider and the yield lower. Hydrogen concentration is considered to affect catalyst particle size and activity during the time interval before starting CNT growth (=incubation period). With CH4/H2 = 27/3 sccm for a growth time of 10 min efficient CNT growth was achieved because the amount of carbon atoms in the CNTs and that calculated from simulation showed good agreement. The effect of hydrogen etching on CNTs was analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy by observing CNTs treated by H2 plasma after CNT growth. It was confirmed that (a) multi-walled CNTs were not etched by the H2 plasma, (b) the C 1s XPS spectra of the CNTs showed no chemical shift after the treatment, and (c) C-H bonds were produced in CNTs during their growth.  相似文献   

12.
Diamond deposition on 1 × 1 cm2 Si (100) substrates with bias was carried out by microwave plasma chemical vapor deposition (MPCVD). Distribution of deposited diamonds has been significantly improved in uniformity over all the Si substrate surface area by using a novel designed dome-shaped Mo anode. The deposits were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman analysis. SEM observations show that there is a high density of cone-like particles uniformly deposited on the surface of the substrate in short bias nucleation period. The average diameter, height and density of cone-like structure were increased with methane concentration in the bias stage. TEM reveals that the cone-like structure is actually composed of Si conic crystal covered with diamond. Between Si and diamond, a thin layer of cubic SiC is found in epitaxy with Si. Furthermore, for 3% CH4 concentration, the range of diameter of cone-like structure was about 20–90 nm and the size of diamond was about 10–60 nm.  相似文献   

13.
NaA zeolite membranes were synthesised in the secondary growth hydrothermal method based on the seeding of the inner surface of a ceramic α-alumina tube. The impacts of crystallisation time and zeolite precursor concentration (in H2O) were investigated. The structure and stability of the prepared NaA zeolite membranes were also investigated with operating temperatures, times and pressures. The results indicate that the optimal synthesis gel molar composition was 3Na2O: 2SiO2: Al2O3: 200H2O. This led to cubic-shaped NaA zeolite which showed good stability. The optimal NaA zeolite membrane had H2O and CH3OH fluxes of 2.77 and 0.19 kg/m2h, with H2O/H2 and CH3OH/H2 separation factors of ∞ and 0.09 at a temperature of 30 °C. The NaA zeolite membrane had high thermal stability, but poor separation performance at high temperature (240 °C). The results suggested that the H2 permeation flux is significantly influenced by preferential adsorption of vapour in the NaA zeolite membrane.  相似文献   

14.
Conversion of NOx with reducing agents H2, CO and CH4, with and without O2, H2O, and CO2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NOx to N2 conversion with H2 and CO (>90% conversion and N2 selectivity) range under lean conditions. The formation of N2O is absent in the presence of both H2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H2 and CH4 reducing agent but is less obvious with H2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH4, 500 ppm NO, 5% O2, 10% H2O (0–1% H2), N2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NOx reduction with H2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K.  相似文献   

15.
TiO2 photocatalysts and diamond electrodes   总被引:1,自引:0,他引:1  
Photocatalysis and electroanalysis are two seemingly disparate research areas, but they are linked by the fact that both involve the use of well-known materials, TiO2 and diamond, respectively, in new ways in the service of both environmental and medical sciences. In the present article, recent developments in the area of TiO2 photocatalysis and diamond electrochemistry are summarized, with emphasis on our findings at the University of Tokyo. In the photocatalysis section, we present the fundamental aspects of TiO2 photocatalysis and its practical applications, including air purification, self-cleaning surfaces and transparent superhydrophilic coatings. The diamond electrochemistry section deals with the electrochemical characterization and applications of diamond electrodes, which exhibit high sensitivity and excellent stability for electroanalysis, in contrast to conventional electrode materials. A particularly interesting environmental application of diamond electrodes has been developed; this involves the trace analysis of lead without the use of mercury.  相似文献   

16.
CO_2吸附强化CH_4/H_2O重整制氢是提供低成本高纯氢气和实现CO_2减排的方法之一。其中,催化剂和吸附剂是该工艺的重要组成部分,其活性与选择性制约了反应速率和产率,寿命长短关系到生产成本。综述了CO_2吸附强化CH_4/H_2O重整制氢催化剂和吸附剂的研究现状及存在的问题,机械混合的催化剂与吸附剂在反应过程中存在吸附产物包覆催化活性位点的问题,导致催化剂活性迅速下降。针对该问题,进一步探讨了不同结构双功能复合催化剂的结构特性、研究现状及其在循环-再生过程中存在的问题,核壳型双功能催化剂具有吸附组分与催化剂组分相对独立、催化组分分散分布和比表面积大等优点,在吸附强化制氢中有进一步研究的潜力。利用双功能催化剂的结构特点,实现反复循环再生过程中催化与脱碳反应的匹配,是推动CO_2吸附强化CH_4/H_2O重整制氢技术工业化发展的关键。  相似文献   

17.
Carbon nanosheets, free-standing, two-dimensional, carbon nanostructures with atomically thin edges, were synthesized by radio frequency plasma enhanced chemical vapor deposition. This work reports nanosheet growth using acetylene as a feedstock gas. The maximum acetylene nanosheet growth rate was found to be 16 μm/h or ∼8 times that of previously reported methane nanosheets. The acetylene nanosheets have a smooth surface morphology, an ordered, vertical orientation, a uniform sheet height distribution and a graphitic structure containing some defects. In emission current density vs. applied electric field (JE) field emission measurements, the acetylene nanosheets have a threshold field, for 10 μA/cm2 current density, of ∼3.0 V/μm. In direct current emission mode, a stable continuous milliampere level emission current, corresponding to a current density up to 9.4 mA/cm2, was collected from acetylene nanosheet samples for more than 100 h.  相似文献   

18.
Adsorption and separation of N2, CH4, CO2, H2 and CO mixtures in CMK-5 material at room temperature have been extensively investigated by a hybrid method of grand canonical Monte Carlo (GCMC) simulation and adsorption theory. The GCMC simulations show that the excess uptakes of pure CH4 and CO2 at 6.0 MPa and 298 K can reach 13.18 and 37.56 mmol/g, respectively. The dual-site Langmuir–Freundlich (DSLF) model was also utilized to fit the absolute adsorption isotherms of pure gases from molecular simulations. By using the fitted DSLF model parameters and ideal adsorption solution theory (IAST), we further predicted the adsorption separation of N2–CH4, CH4–CO2, N2–CO2, H2–CO, H2–CH4 and H2–CO2 binary mixtures. The effect of the bulk gas composition on the selectivity of these gases is also studied. To improve the storage and separation performance, we finally tailor the structural parameters of CMK-5 material by using the hybrid method. It is found that the uptakes of pure gases, especially for CO2, can be enhanced with the increase of pore diameter Di, while the separation efficiency is apparently favored in the CMK-5 material with a smaller Di. The selectivity at Di=3.0 nm and 6.0 MPa gives the greatest value of 8.91, 7.28 and 27.52 for SCO2/N2, SCH4/H2 and SCO2/H2, respectively. Our study shows that CMK-5 material is not only a promising candidate for gas storage, but also suitable for gas separation.  相似文献   

19.
In our previous work, we have investigated the adsorption selectivity of CH4/H2 in three pairs of isoreticular metal-organic frameworks (IRMOFs) with and without interpenetration to study the effect of interpenetration on gas mixture separation through Monte Carlo simulation. In addition, the self-diffusivities and the diffusion mechanism of single H2 and CH4 in these MOFs were examined by molecular dynamics simulations. In this work, we extend our previous work to mixed-ligand MOFs to investigate the effects of interpenetration as well as mixed-ligand on both equilibrium-based and kinetic-based gas mixture separation. We found that methane adsorption selectivity is much enhanced in the selected mixed-ligand interpenetrated MOFs compared with their non-interpenetrated counterparts, similar to what we found before for IRMOFs with single-ligand. At room temperature and atmospheric pressure, molecular-level segregation was observed in the mixed-ligand MOFs, and the extent of the effects of interpenetration is comparable for single-ligand and mixed-ligand MOFs. In addition, we found that the diffusion selectivity in the interpenetrated MOFs is similar to the one in their non-interpenetrated counterparts, while the permeation selectivity in the former is much higher than that in the latter, which corroborates our expectation that interpenetration is a good strategy to improve the overall performance of a material as a membrane in separation applications based only on the single component diffusion results. Furthermore, the CH4 permeability of the selected MOF membrane was also evaluated.  相似文献   

20.
The electrochemical oxygen reduction reaction (ORR) was studied at Pt and Pt alloyed with 30 atom% Ni in 1 M H2SO4 and in 1 M H2SO4/0.5 M CH3OH by means of rotating disc electrode. In pure sulphuric acid, the overpotential of ORR at 1 mA cm−2 is about 80 mV lower at Pt70Ni30 than at pure Pt. It was found that in methanol containing electrolyte solution the onset potential for oxygen reduction at PtNi is shifted to more positive potentials and the alloy catalyst has an 11 times higher limiting current density for oxygen reduction than Pt. Thus, PtNi as cathode catalyst should have a higher methanol tolerance for fuel cell applications. On the other hand, no significant differences in the methanol oxidation on both electrodes was found using cycling voltammetry, especially regarding the onset potential for methanol oxidation. During all the measurements no significant electrochemical activity loss was observed at Pt0.7Ni0.3. Ex-situ XPS investigations before and after the electrochemical experiments have revealed Pt enrichment in the first surface layers of the PtNi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号