首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the thermal conductivity of HFC-32, HFC-125, and HFC-134a were carried out for the first time in both solid and liquid phases at the saturation pressure at room temperature and in the temperature ranges from 120 to 263, from 140 to 213, and from 130 to 295 K, respectively. A transient hot-wire instrument using one bare platinum wire was employed for measurements, with an uncertainty of less than ±2%. The experimental results demonstrated that the thermal conductivity of HFC-32, HFC-125, and HFC-134a in the solid phase showed a positive temperature dependence. For HFC-32 and HFC-125, there were big jumps between the solid and the liquid thermal conductivity at the melting point. But for HFC-134a, the solid and liquid thermal conductivity at the melting point is almost-continuous.  相似文献   

2.
Thermal conductivity of alternative refrigerants in the liquid phase   总被引:1,自引:0,他引:1  
Measurements ofthe thermal conductivity of five alternative refrigerants. namely, difluoromethane HFC-321. pentafluoroethane (HFC-125), 1,1,1-trifluoroethane (HFC-143a), and dichloropentafluoropropanes (HCFC-225ca and HCFC-225cb). are carried out in the liquid phase, The range of temperature is 253–324 K for HFC-32, 257–305 K for HFC-125, 268–314 K for HFC-134a. 267–325 K for HCFC-225ca, and 286–345 K for HCFC-225cb, The pressure rank is from saturation to 30 MPa, The reproducibility of the data is better than 0.5% and the accuracy of the data is estimated to be of the order of 1%. The experimental results for the thermal conductivity ofeach substance are correlated by an equation which is a function of temperature and pressure. A short discussion is given to the comparison of the present results with literature values for HFC-125, The saturated liquid thermal conductivity values of HFC-32. HFC-125, and HFC-143a are compared with those of chlorodifluoromethane (HCFC-22) and tetrafluoroethane (HFC-134a) and it is shown that the value of HFC-32 is highest, while that of HFC-125 is lowest, among these substances, The dependence of thermal conductivity on number of fluorine atoms among the refrigerants with the same number of carbon and hydrogen atoms is discussed.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994. Boulder, Colorado. U.S.A.  相似文献   

3.
Measurements of the thermal conductivity of HFC-125 that have been made by a coaxial cylinder cell operating in steady state are reported. The measurements of the thermal conductivity of HFC-125 were performed along several quasi-isotherms between 300 and 515 K in the gas phase and the liquid phase. The pressure range covered varies from 0.1 to 53 MPa. Based on the measurement of more than 600 points, an empirical equation is provided to describe the thermal conductivity outside the critical region as a function of temperature and density. A careful analysis of the various sources of error leads to an estimated uncertainty of approximately ± 1.5%.  相似文献   

4.
The liquid thermal conductivity of mixtures of HFC-32/125 and HFC-32/134a was measured using the transient hot-wire apparatus in the temperature ranges from 213 to 293 K and from 193 to 313 K, respectively, in the pressure range from 2 to 30 MPa and with HFC-32 mass fractions of 0.249, 0.500, and 0.750 for each system. The uncertainty of the thermal conductivity was estimated to be ±0.7%. For practical applications, the thermal conductivity data for the two mixtures were represented by a polynomial in temperature, pressure, and mass fraction of HFC-32 with a standard deviation of 1.0%.  相似文献   

5.
Measurements of the thermal conductivity of HFC-143a that were made by a coaxial cylinder cell operating in steady state are reported. The measurements of the thermal conductivity of HFC-143a were performed along several quasi-isotherms between 300 and 500 K in the gas and liquid phases. The pressure range covered varies from 0.1 to 50 MPa. Based on the measurement of more than 600 points, an empirical equation is provided to describe the thermal conductivity outside the critical region as a function of temperature and density. A careful analysis of the various sources of error leads to an estimated uncertainty of approximately ±1.5%.  相似文献   

6.
The liquid thermal conductivity of two ternary mixtures of HFC-32/125/134a (23.0/25.0/52.0 and 19.0/43.8/37.2 wt%) was measured using a transient hot-wire instrument in the temperature ranges from 193 to 293 K and from 213 to 293 K, respectively, and in the pressure range from 2 to 30 MPa. The thermal conductivity has an estimated uncertainty of ±0.7%. For engineering purposes, the thermal conductivity data were correlated using a polynomial in temperature and pressure for each mixture with a standard deviation of 0.6%.  相似文献   

7.
The gaseous thermal conductivity of three CFC alternatives, HFC-134a (1,1,1,2-tetrafluoroethane), HCFC-123 (1,1-dichloro-2,2,2-trifluoroethane), and HCFC-141b (1,1-dichloro-1-fluoroethane), has been measured in the temperature ranges 273–363 K (HFC-134a) and 313–373 K (HCFC-123, HCFC-141b) at pressures up to saturation. The measurements were performed with a new improved transient hot-wire apparatus. The uncertainty of the experimental data is estimated to be within 1%. The gaseous thermal conductivity obtained in this work together with the liquid thermal-conductivity data from the literature were correlated with temperature and density by an empirical equation based on the excess thermal-conductivity concept. The equation is found to represent the experimental results with average deviations of 2.5 % for HFC-134a, 0.75% for HCFC-123, and 0.55% for HCFC-141b, respectively.  相似文献   

8.
Thermodynamic and Transport Properties of Liquid HFC-227ea   总被引:1,自引:0,他引:1  
The thermal conductivity and heat capacity of liquid 1,1,1,2,3,3,3-hepta-fluoropropane (HFC-227ea) have been studied by a high-frequency thermal-wave method over the temperature range of 294 to 345 K at pressures up to 2.8 MPa. The purity of the samples used throughout the measurements is 99.99 mol%. The experimental uncertainties of the thermal conductivity and heat capacity measurements were estimated to be within ±1.5 and ±2%, respectively. The thermal conductivity of HFC-227ea in the liquid phase decreases as temperature increases, while the pressure has an opposite effect.  相似文献   

9.
New measurements of the thermal conductivity of HFC-32, made in a coaxial cylinder cell operating in steady state, are reported. The measurements were performed along several quasi-isotherms between 300 and 465 K in both the liquid and the vapor phases. The pressure ranged from 0.1 to 50 MPa. Based on the experimental data, a background equation is provided to calculate the thermal conductivity outside the critical region as a function of temperature and density. A careful analysis of the various sources of experimental errors leads to an estimated uncertainty of ±1.5%. Comparisons between calculated and experimental values from the literature are presented.  相似文献   

10.
A recently developed scheme, based on considerations of hard-sphere theory, is used for the simultaneous prediction of the thermal conductivity and the viscosity of binary and ternary HFC refrigerant mixtures, consisting of HFC-32, HFC-125, and HFC-134a. In this prediction scheme, the hypothetical molecular parameters of HFC refrigerant mixtures were assumed to be the molar average of the pure component values. The close agreement between the predicted values and the experimental results of thermal conductivity and viscosity demonstrate the predictive power of this scheme.  相似文献   

11.
Thermal conductivity of gaseous HFC-134a,HFC-143a,HCFC-141b,and HCFC-142b   总被引:1,自引:0,他引:1  
The thermal conductivity of new environmentally acceptable fluorocarbons HFC-134a (CH2FCF3), HFC-143a (CH3CF3), HCFC-141b (CH3CCl2F), and HCFC-142b (CH3CCl2F) in the gaseous phase has been measured in the temperature range 293–353 K at pressures up to 4 MPa. The thermal conductivity has been measured with a coaxial-cylinder cell on a relative basis. The apparatus was calibrated with He, Ne, Ar, Kr, N2, CH4, and SF6 as reference fluids. The uncertainty of the experimental data obtained is estimated to be within 2% except for the uncertainty associated with the reference thermal-conductivity values. The excess thermal conductivity has been correlated satisfactorily as a function of density.  相似文献   

12.
The gaseous thermal conductivity of dilluoromethane (HFC-32). pentalluoroethane (HFC-125). and their binary mixtures was measured with a transient hot-wire apparatus in the temperature ranges 283–333 K at pressures up to saturation. The uncertainty of the data is estimated to be within I %. The thermal conductivity as a function of composition of the mixtures at constant pressure and temperature is found to have a small maximum near 0.3–0.4 mole fraction of HFC-32. The gaseous thermal-conductivity data obtained for pure HFC-32 and HFC-125 were correlated with temperature and density together with the liquid thermal-conductivity data from the literature, based on the excess thermal-conductivity concept. The composition dependence of the thermal conductivity at a constant temperature is represented with the aid of the Wassiljewa equation.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado. U.S.A.  相似文献   

13.
The thermal conductivity of HFC 134a was measured in the liquid phase with the polarized transient hot-wire technique. The experiments were performed at temperatures from 213 to 293 K at pressures up to 20 MPa. The data were analyzed to obtain correlations in terms of density and pressure. This study is part of an international project coordinated by the Subcommittee on Transport Properties of Commission 1.2 of IUPAC, conducted to investigate the large discrepancies between the results reported by various authors for the transport properties of HFC 134a, using samples of different origin. Two samples of HFC 134a from different sources have been used. The thermal conductivity of the first sample was measured along the saturation line as a function of temperature and the data were presented earlier. The thermal conductivity of the second one, the round-robin sample was measured as a function of pressure and temperature. These data were extrapolated to the saturation line and compared with the data obtained, previously in order to demonstrate the importance of the sample origin and their real purity. The accuracy of the measurements is estimated to be 0.5%. Finally, the results are compared with the existing literature data.  相似文献   

14.
There are two promising candidates as alternative refrigerants for air-conditioners and heat pumps. The first is R407C, which is composed of HFC-32 (23 mass%), HFC-125 (25 mass%), and HFC-134a (52 mass%). The second is R410A, which is composed of HFC-32 (50 mass%) and HFC-125 (50 mass%). In this study, formation conditions of clathrate compounds between water and HFC alternative refrigerants such as HFC-32, HFC-125, HFC-134a, and their mixtures, R407C and R410A, were investigated. Phase diagrams of clathrates of these HFC alternative refrigerants and their mixtures were determined. From the phase diagrams, the critical decomposition temperature and the critical decomposition pressure were determined. The relationship between the critical decomposition points for the clathrates of HFC-32, HFC-125, HFC-134a, R410A, and R407C were studied. It is found that R407C and R410A form clathrate compounds with water under the evaporating temperature condition in the refrigeration cycle of air-conditioners and heat pumps.  相似文献   

15.
The vapor pressure and its dependence on temperature of halocarbons for 0.002< p R<1 have been analyzed in terms of universal behavior. Results for CFC-114, HCFC-123, HCFC-141b, HCFC-142b, HCFC-143a, HFC-23, HFC-32, HFC-134, HFC-125, HFC-134a, and HFC-152a for reduced temperatures between 0.55 and 1.0 show that the reduced vapor pressure can be expressed as a function of 1–T R by a Padé approximant. Deviations of the correlated data from the universal function do not amount to more than ±0.06 MPa, with an average deviation of 0.025 MPa. Predictions of the saturation vapor pressures of HCFC-124, HCFC-225ca, and HCFC-225cb, which are the systems used to test the capability of this scheme, agree within 0.025 MPa, that is, within the accuracy of the corresponding states correlation. However, for HFC-236ea, the deviations are as large as –0.07 MPa. The present scheme can be used to calculate the Pitzer acentric factor, and an average value of =0.269±0.015 is obtained for all the fluids.  相似文献   

16.
Measurements of the thermal conductivity of refrigerants R124, R125, and R134a in the vapor phase are presented. The measurements, performed in a newly developed transient hot-wire instrument, cover a temperature range from 273 to 333 K and a pressure range from about atmospheric up to below the saturation pressure. A finite-elements program developed allowed the reexamination of the major corrections employed in the analysis of the results. The uncertainty of the reported values is estimated to be better than ±1%. Comparisons with measurements of other investigators along the saturation line show a lack of reliable thermal conductivity data in the vapor phase for these compounds. Invited paper presented at the Fourth Asian Thermophysical Properties Conference, September 5–8, 1995, Tokyo, Japan.  相似文献   

17.
根据两相流动的均相流假设 ,建立了绝热毛细管分布参数的稳态数学模型 ,结合制冷工质HFC 134a基于MH状态方程的热力学性质计算模型 ,采用新的基团贡献法计算粘度 ,用熵增判据考虑壅塞流动的影响 ,对绝热毛细管流量进行数值模拟计算。对理论计算结果与相关文献的实验数据进行了比较。针对以HFC 134a为工质的制冷系统 ,编制了一套较为实用的绝热毛细管流量计算软件  相似文献   

18.
This paper reports experimental results for the viscosity of gaseous mixtures of HFC-134a (1,1,1,2-tetrafluoroethane)+HFC-32 (difluoromethane). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The viscosity was measured for three mixtures containing 25.00, 52.40, and 74.98 mole% HFC-134a in HFC-32. Experimental results for the viscosity at normal pressures show a minimum as plotted against mole fraction in the higher temperature region, which may be the first experimental observation of the minima for dilute binary gaseous mixtures of HFCs. The viscosity at normal pressures was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters were obtained for unlike-pair interactions between HFC-32 and HFC-134a. The modified Enskog theory developed by Vesovic and Wakeham was applied to predict the viscosity for the binary gaseous mixtures under pressure. As for the calculation of pseudo-radial distribution functions in mixtures, a method based on the equation of state for hard-sphere fluid mixtures proposed by Carnahan–Starling was applied.  相似文献   

19.
A vapor-liquid equilibrium apparatus has been developed and used to obtain data for the binary HFC-32/134a and HFC-125/134a systems. Twenty-two equilibrium data are obtained for the HFC-32/134a system over the temperature range from 258.15 to 283.15 K at 5 K intervals and the composition range from 0.2 to 0.8 liquid mole fraction. Twenty-five equilibrium data are obtained for the HFC-125/134a system over the temperature range from 263.15 to 303.15 K at 10 K intervals and the composition range from 0.18 to 0.81 liquid mole friction. These data have been tested and found to be thermodynamically consistent. Based upon the present data, the binary interaction parameters of the Carnahan-Starling-De Santis (CSD) and Redlich–Kwong–Soave (RKS) equations of state are calculated for five isotherms for the HFC-125/134a mixture and six isotherms for the HFC-32/134a mixture. The calculated results from the CSD equation are compared with data in the open literature.  相似文献   

20.
This paper presents new measurements of the viscosity of gaseous R407C (23 mass% HFC-32, 25 mass% HFC-125, 52 mass% HFC-143a) and R407E (25 mass% HFC-32, 15 mass% HFC-125, 60 mass% HFC-143a). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The densities of these two fluid mixtures were calculated with the equation-of-state model in REFPROP. The viscosity at normal pressures was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters needed in the analysis were obtained from our previous studies for the viscosity of the binary mixtures consisting of HFC-32, HFC-125, and HFC-134a. The modified Enskog theory developed by Vesovic and Wakeham (V-W method) was applied to predict the viscosity for the ternary gaseous HFC mixtures under pressure. As for the calculation of pseudo-radial distribution functions in mixtures, a method based on the equation of state for hard-sphere fluid mixtures proposed by Carnahan-Starling was applied. It was found that the V-W method can predict the viscosity of R407C and R407E without any additional parameters for the ternary mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号