共查询到19条相似文献,搜索用时 62 毫秒
1.
地源热泵竖直地埋管换热量的计算 总被引:1,自引:0,他引:1
按照《地源热泵系统设计技术规范》中附录B提供的依据,对竖直地埋管换热器的各项热阻进行了详细计算,得出每米换热量,用于指导设计,并通过对结论的分析指出了应用《地源热泵系统设计技术规范》应注意的问题. 相似文献
2.
1 地埋管换热器的分析 (1)地埋管换热器的传热 地埋管地源热泵系统利用地埋管换热器与岩土体进行热交换.地埋管换热器设计是否合理,决定着系统的经济性和运行的可靠性.地埋管换热器由埋于地下的密闭循环管组构成.根据管路埋置方式不同,分为水平埋管和竖直埋管2种.水平埋管投资少、施工简单;竖直埋管占地少、换热性能稳定.竖直埋管的研究与应用远远多于水平埋管. 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
11.
A high-efficiency ground heat exchanger has been developed for use with ground-source heat pumps. The exchanger is made of copper tubing, shaped in the form of a spiral, which can be installed in a vertical borehole backfilled with sand. Thermal performance of a full-scale prototype indicated that this heat exchanger can achieve very high heat extraction rates if subfreezing operating temperatures are used. For most soil types cyclic freezing and thawing is not a problem; however, for the sensitive Leda clay in which the prototype tests were conducted, substantial settlement occurred after the first freeze-thaw cycle owing to initial collapse of the soil structure. 相似文献
12.
An ejector-compression heat pump can use low-grade thermal energy in the neighbourhood of 93.3°C (200°F) to provide space cooling and heating. This paper applies the existing ejector theory to estimate the performance of an ejector heat pump system at various operating conditions. The study includes parametric, sensitivity and off-design analyses of the heat pump performance. The performance enhancement options and desired ejector geometry are also examined. Refrigerants 11, 113 and 114 are three of the halocarbons most suitable for the ejector heat pump system. The estimated coefficients of performance for a simple ejector heat pump are 0.3 for the cooling mode and 1.3 for the heating mode at a sample operating condition in which the refrigerant (R-11) boiling temperature is 93.3°C (200°F), condensing temperature 43.3°C (110°F) and evaporating temperature 10°C (50°F). A 24 per cent performance improvement is predicted for a heat pump with two-stage ejectors and regenerative heat exchangers. The off-design performance is relatively insensitive to the evaporator temperature variations. 相似文献
13.
热泵原理及发展和供热经济性分析 总被引:1,自引:0,他引:1
对热泵原理进行了阐述,介绍了热泵在我国的发展与应用,对热泵的技术性和热泵供热的经济性进行了分析,并与其它常用能源供热所需费用进行了综合的比较,提出了热泵技术在中国的发展前景和展望。 相似文献
14.
15.
The system performance of a ground source heat pump (HP) system is determined by the HP characteristics itself and by the thermal interaction between the ground and its borehole heat exchanger (BHE). BHE performance is strongly influenced by the thermal properties of the ground formation, grouting material, and BHE type. Experimental investigations on different BHE types and grouting materials were carried out in Belgium. Its performances were investigated with in situ thermal response tests to determine the thermal conductivity (λ) and borehole resistance (Rb). The line‐source method was used to analyze the results, and the tests showed the viability of the method. The main goal was to determine the thermal borehole resistance of BHEs, including the effect of the grouting material. The ground thermal conductivity was measured as 2.21 W m?1 K?1, a high value for the low fraction of water‐saturated sand and the high clay content at the test field. The borehole resistance for a standard coaxial tube with cement–bentonite grouting varied from 0.344 to 0.162 K W?1 m for the double U‐tube with cement–bentonite mixture (52% reduction). Grouting material based on purely a cement–bentonite mixture results in a high thermal borehole resistance. Addition of sand to the mixture leads to a better performance. The use of thermally enhanced grouts did not improve the performance significantly in comparison with only a low‐cost grouting material as sand. Potential future applications are possible in our country using a mobile testing device, such as characteristics, standardization, quality control, and certification for drilling companies and ground source HP applications, and in situ research for larger systems. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
Yusuf Ali Kara 《国际能源研究杂志》2007,31(15):1504-1516
An experimental study is performed to determine the performance of a ground source heat pump (GSHP) system in the heating mode in the city of Erzurum, Turkey. The GSHP system using R‐134a as refrigerant has a single U‐tube ground heat exchanger (GHE) made of polyethylene pipe with a 16 mm inside diameter. The GHE was placed in a vertical borehole with 55 m depth and 203.2 mm diameter. The average coefficients of performance (COP) of the GSHP system and heat pump in heating mode are calculated as 2.09 and 2.57, respectively. The heat extraction rate per meter of the borehole is determined as 33.60 W m?1. Considering the current gas and electric prices in Erzurum city, the equivalent COP of the GSHP system should be 2.92 for the same energy cost comparing with natural gas. The virgin ground in Erzurum basin has high permeability and low thermal conductivity. In order to improve the thermal efficiency of GHE and thus improve COP of a GSHP in the basin, the borehole should be backfilled with sand as low‐cost backfill material and a 1 to 2 m thick surface plug of clay should be inserted. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
17.
Heat pumps have been known for a long time, but, until the energy crisis of 1973, there were only a few studies covering them. Since that time, in addition to alternative energy sources, scientists and engineers have started studying heat pumps more earnestly. There are several kinds of heat pump and utilizations of them, but the most common one is the vapour-compression heat pump. In recent years researchers have started to study metal hydride heat pumps. The paper considers the metal hydride bed, its thermodynamics, and its utilization as a heat pump. It is also compared with conventional heat pumps. The results indicate that the metal hydride heat pump has several advantages, and its utilization in the industrial, commercial and residential fields is foreseen. 相似文献
18.
Peter Meibom Juha Kiviluoma Rüdiger Barth Heike Brand Christoph Weber Helge V. Larsen 《风能》2007,10(4):321-337
The paper analyses the economic value of using electric heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Both measures have different technical and economic characteristics, making a comparison of the value of these measures relevant. A stochastic, fundamental bottom‐up model, taking the stochastic nature of wind power production explicitly into account when making dispatch decisions, is used to analyse the technical and economical performance of these measures in a North European power system covering Denmark, Finland, Germany, Norway and Sweden. Introduction of heat pumps or electric boilers is beneficial for the integration of wind power, because the curtailment of wind power production is reduced, the price of regulating power is reduced and the number of hours with very low power prices is reduced, making the wind power production more valuable. The system benefits of heat pumps and electric boilers are connected to replacing heat production on fuel oil heat boilers and combined heat and power (CHP) plants using various fuels with heat production using electricity and thereby saving fuel. The benefits of the measures depend highly on the underlying structure of heat production. The integration measures are economical, especially in systems where the marginal heat production costs before the introduction of the heat measures are high, e.g. heat production on heat boilers using fuel oil. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
F.R. Steward 《Energy Conversion and Management》1984,24(2):123-129
Relations are derived for the coefficient of performance of heat pump systems used to transfer heat from a low temperature heat source stream to a high temperature heat sink stream. The manner of use and operation of a number of heat pumps in such a system has been determined for the thermodynamic optimum for reversible and irreversible heat pumps. 相似文献