首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Three dimensional integrated microstrip antenna (3DIMA) can carry the designed load while functioning as an antenna. In this study, the cylindrical conformal single-patch 3DIMAs with various curvatures were designed, simulated, fabricated and tested experimentally using a 3D orthogonal woven glass preform/epoxy resin composite system. The electromagnetic performances of the cylindrical microstrip antennas were analyzed. The simulated and tested results matched well and the return losses of the cylindrical conformal 3DIMAs with radii of curvatures of 60, 45 and 25 mm were less than −10 dB while resonant frequencies and their gain values were significantly influenced by the radius of curvature and the feeding direction. The 3DIMAs with the curvature perpendicular to the feeding directions showed more stable resonant frequencies and larger gain values than those of 3DIMAs with the curvature along their feeding directions.  相似文献   

2.
Abstract

This paper introduces two concepts for building fault‐tolerant multistage interconnection networks (MIN). The first one is to add multiplexers/demultiplexers at the front/back end of a pre‐constructed network which may be a uniquepath MIN or a fault‐tolerant one. The second one is to integrate multiple fault‐tolerant MINs to form a larger and even more reliable one. Based upon the first concept, we propose a new fault‐tolerant MIN, the Path Sharing Network, which is derived by adding multiplexers/demultiplexers at the front/back end of the Banyan MIN. The Recursive Path Sharing Network is also proposed by integrating two fault‐tolerant MINs based upon the second concept. The reliability and cost‐effectiveness of the proposed networks are analyzed and compared with other fault‐tolerant MINs. Surprisingly, the proposed networks are better than EGN‐4 which was shown to be better than ESC, 3‐Rep and INDRA.  相似文献   

3.
Fused‐ring electron acceptors (FREAs), as a family of non‐fullerene (NF) acceptors, have achieved tremendous success in pushing the power conversion efficiency of organic solar cells. Here, the detailed molecular packing motifs of two extensively studied FREAs—ITIC and ITIC‐Th are reported. It is revealed for the first time the long‐range structure ordering along the backbone direction originated from favored end group π–π stacking. The backbone ordering could be significantly enhanced in the ternary film by the mutual mixing of ITIC and ITIC‐Th, which gives rise to an improved in‐plane electron mobility and better ternary device performance. The backbone ordering might be a common morphological feature of FREAs, providing explanations to previously observed small open circuit voltage loss and superior performance of FREA‐based devices and guiding the future molecular design of high‐performance NF acceptors.  相似文献   

4.
The significance of bionanomotors in nanotechnology is analogous to mechanical motors in daily life. Here the principle and approach for designing and constructing biomimetic nanomotors with continuous single‐directional motion are reported. This bionanomotor is composed of a dodecameric protein channel, a six‐pRNA ring, and an ATPase hexamer. Based on recent elucidations of the one‐way revolving mechanisms of the phi29 double‐stranded DNA (dsDNA) motor, various RNA and protein elements are designed and tested by single‐molecule imaging and biochemical assays, with which the motor with active components has been constructed. The motor motion direction is controlled by three operation elements: (1) Asymmetrical ATPase with ATP‐interacting domains for alternative DNA binding/pushing regulated by an arginine finger in a sequential action manner. The arginine finger bridges two adjacent ATPase subunits into a non‐covalent dimer, resulting in an asymmetrical hexameric complex containing one dimer and four monomers. (2) The dsDNA translocation channel as a one‐way valve. (3) The hexameric pRNA ring geared with left‐/right‐handed loops. Assessments of these constructs reveal that one inactive subunit of pRNA/ATPase is sufficient to completely block motor function (defined as K = 1), implying that these components work sequentially based on the principle of binomial distribution and Yang Hui's triangle.  相似文献   

5.
6.
We consider the problem of determining the distribution of the complex‐valued shear modulus for an incompressible linear viscoelastic material undergoing infinitesimal time‐harmonic deformation, given the knowledge of the displacement field in its interior. In particular, we focus on the two‐dimensional problems of anti‐plane shear and plane stress. These problems are motivated by applications in biomechanical imaging, where the material modulus distributions are used to detect and/or diagnose cancerous tumors. We analyze the well‐posedness of the strong form of these problems and conclude that for the solution to exist, the measured displacement field is required to satisfy rather restrictive compatibility conditions. We propose a weak, or a variational formulation, and prove the existence and uniqueness of solutions under milder conditions on measured data. This formulation is derived by weighting the original PDE for the shear modulus by the adjoint operator acting on the complex‐conjugate of the weighting functions. For this reason, we refer to it as the complex adjoint weighted equation (CAWE). We consider a straightforward finite element discretization of these equations with total variation regularization, and test its performance with synthetically generated and experimentally measured data. We find that the CAWE method is, in general, less diffusive than a corresponding least squares solution, and that the total variation regularization significantly improves its performance in the presence of noise. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, unconditionally stable higher‐order accurate time step integration algorithms suitable for linear first‐order differential equations based on the weighted residual method are presented. Instead of specifying the weighting functions, the weighting parameters are used to control the algorithm characteristics. If the numerical solution is approximated by a polynomial of degree n, the approximation is at least nth‐order accurate. By choosing the weighting parameters carefully, the order of accuracy can be improved. The generalized Padé approximations with polynomials of degree n as the numerator and denominator are considered. The weighting parameters are chosen to reproduce the generalized Padé approximations. Once the weighting parameters are known, any set of linearly independent basic functions can be used to construct the corresponding weighting functions. The stabilizing weighting factions for the weighted residual method are then found explicitly. The accuracy of the particular solution due to excitation is also considered. It is shown that additional weighting parameters may be required to maintain the overall accuracy. The corresponding equations are listed and the additional weighting parameters are solved explicitly. However, it is found that some weighting functions could satisfy the listed equations automatically. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
This paper has the purpose of describing, developing and comparing the formulae of aeroelastic forces in the time domain for the aerodynamic study of bridges. In particular, it considers the ‘quasi‐steady’ formulation and the formulation ‘derived from the extension of aeroelastic derivatives to the time domain’ with the use of the recursive expression for the memory term. Both formulae are then applied to the analysis of ‘stress ribbon’ pedestrian bridges, aerodynamically similar to a thin airfoil immersed in a fluid. The thin airfoil theory is described and then extended to general coverage of bridge dynamics in order to identify the essential aeroelastic coefficients and derivatives. Different formulae are also compared with simplified theory of the aeroelastic issue frequency domain. Finally, this comparison, the obtained results and all input data are recorded and can be used as a possible benchmark for other theoretical formulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Compatible dual‐echo arteriovenography (CODEA) is a recent MRI technique for simultaneous acquisition of an MR angiogram (MRA) and MR venogram (MRV) with image quality comparable to conventional single‐echo acquisitions. The purpose of this study was to evaluate the utility of CODEA in imaging patients with chronic stroke and to test the utility of a new image representation technique (“enhanced maximum intensity projection [MIP]") based on tissue segmentation, intensity inversion, and vessel enhancement filtering) for MRV. Arterial and venous abnormalities associated with stroke were delineated on MRA and MRV acquired simultaneously with the CODEA technique. CODEA MRV displayed with the enhanced MIP technique facilitated the visualization of the overall venous structures in 3D. Reduced venous vascularity was detected in the regions of arterial occlusion compared to the contralateral normal brain regions. The CODEA technique along with the enhanced MIP technique may be valuable, particularly in clinical applications that require efficient MRA/MRV imaging because of limited scan time such as in acute stroke. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 152–156, 2013  相似文献   

10.
In this paper two multivariate statistical methodologies are compared in order to estimate a multi‐input multi‐output transfer function model in an industrial polymerization process. In these contexts, process variables are usually autocorrelated (i.e. there is time‐dependence between observations), posing some problems to classical linear regression models. The two methodologies to be compared are both related to the analyses of multivariate time series: Box‐Jenkins methodology and partial least squares time series. Both methodologies are compared keeping in mind different issues, such as the simplicity of the process modeling (i.e. the steps of the identification, estimation and validation of the model), the usefulness of the graphical tools, the goodness of fit, and the parsimony of the estimated models. Real data from a polymerization process are used to illustrate the performance of the methodologies under study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Metasurfaces are used to enable acoustic orbital angular momentum (a‐OAM)‐based multiplexing in real‐time, postprocess‐free, and sensor‐scanning‐free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing schemes. The metasurface‐based communication relying on encoding information onto twisted beams is numerically and experimentally demonstrated by realizing real‐time picture transfer, which differs from existing static data transfer by encoding data onto OAM states. With the advantages of real‐time transmission, passive and instantaneous data decoding, vanishingly low loss, compact size, and high transmitting accuracy, the study of a‐OAM‐based information transfer with metasurfaces offers new route to boost the capacity of acoustic communication and great potential to profoundly advance relevant fields.  相似文献   

12.
In this paper, the effect of using the predetermined coefficients in constructing time‐step integration algorithms is investigated. Both first‐ and second‐order equations are considered. The approximate solution is assumed to be in a form of polynomial in the time domain. It can be related to the truncated Taylor's series expansion of the exact solution. Therefore, some of the coefficients can be predetermined from the known initial conditions. If there are m predetermined coefficients and r unknown coefficients in the approximate solution, the unknowns can be solved by the weighted residual method. The weighting parameter method is used to investigate the resultant algorithm characteristics. It is shown that the formulation is consistent with a minimum order of accuracy m+r. The maximum order of accuracy achievable is m+2r. Unconditionally stable algorithms exist if mr for first‐order equations and m+1⩽r for second‐order equations. Hence, the Dahlquist's theorem is generalized. Algorithms equivalent to the Padé approximations and unconditionally stable algorithms equivalent to the generalized Padé approximations are constructed. The corresponding weighting parameters and weighting functions for the Padé and generalized Padé approximations are given explicitly. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Residual‐based control charts for autocorrelated processes are known to be sensitive to time series modeling errors, which can seriously inflate the false alarm rate. This paper presents a design approach for a residual‐based exponentially weighted moving average (EWMA) chart that mitigates this problem by modifying the control limits based on the level of model uncertainty. Using a Bayesian analysis, we derive the approximate expected variance of the EWMA statistic, where the expectation is with respect to the posterior distribution of the unknown model parameters. The result is a relatively clean expression for the expected variance as a function of the estimated parameters and their covariance matrix. We use control limits proportional to the square root of the expected variance. We compare our approach to two other approaches for designing robust residual‐based EWMA charts and argue that our approach generally results in a more appropriate widening of the control limits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号