共查询到20条相似文献,搜索用时 0 毫秒
1.
将非饱和土广义有效应力原理与三剪强度准则相结合,提出了非饱和土广义有效应力三剪强度准则。将所提准则作为破坏准则,分别采用等量代换法和坐标平移法推导出新的破坏应力比,并将其与非饱和土修正剑桥模型相结合得到了新的屈服函数。相比于原来修正剑桥模型中的破坏应力比为定值,新的屈服函数可以更好地反应土体全应力状态、中间主应力效应和拉压不等效应。在弹塑性理论的框架下,建立了非饱和土的广义有效应力三剪弹塑性本构模型。以江西正常固结非饱和重塑红黏土作为试验研究对象,进行室内土工试验、土水特征曲线试验、压缩回弹试验、非饱和土常规三轴固结排水试验。将该本构模型计算结果与非饱和土三轴固结排水试验结果进行对比验证。结果表明:数值模拟结果与试验结果吻合较好,验证了该本构模型的正确性。在轴向应变较小时,等量代换法和坐标平移法模拟结果比较接近,随着轴向应变增大直至偏应力达到平稳状态的过程中,等量代换法计算结果要大于坐标平移法计算结果,且更接近于试验值。真三轴计算预测结果表明:在固结排水条件下,初始压实度、净围压、基质吸力相同,中间主应力影响系数越大,则剪应力和体应变越大。
2.
Shih‐Tsung Hsu 《中国工程学刊》2013,36(2):305-317
Abstract A series of triaxial tests has been performed to establish the stress‐strain curves for I‐Lan sand and Taipei silty sand. A constitutive model for the continuous strain hardening‐softening and volumetric dilatancy of these two soils is proposed, based on the results of triaxial tests. Using this model, a numerical program is then established, with FLAC software, to analyze the uplift behavior of model anchors in sand and field anchors in silty soil. It was found from triaxial tests, that the peak friction angle increases with relative density of soil and decreases with confining pressure. A non‐associated flow rule between plastic strain increment and stress tensor was found. As accumulative plastic strain, relative density and confining pressure were changed, the mobilized friction angle and mobilized dilatancy angle also changed. All parameters needed for the proposed model can be expressed as functions of relative density and confining pressure. This model can calculate the stress‐ strain curves of cohesionless soils determined from triaxial tests accurately. The load‐displacement behaviors determined from anchor tests are compared with those calculated from this numerical program, the numerical results are in good agreement with the test results not only for model anchors in sand but also for different types of field anchors in silty soil. 相似文献
3.
《Materials at High Temperatures》2013,30(4):308-314
AbstractThe macroscopic deformation behaviour of a Ni-based directionally solidified (DS) superalloy was experimentally investigated, and an anisotropic constitutive model of the material was developed. Monotonic and creep tests were performed on uniaxial test specimens machined from DS plates so that the angle between the loading direction and the solidified grain direction varied between 0 and 90°. Tension-torsion creep tests were also conducted to examine the anisotropic behaviour under multiaxial stress conditions. The material exhibited marked anisotropy under elastic and viscous deformation conditions, whereas it showed isotropy under plastic deformation conditions of high strain rates. Then crystal plasticity analyses were carried out to identify slip systems under creep loading conditions, assuming the anisotropic creep behaviour of the DS material. A viscoplastic constitutive model for expressing both the anisotropic elasticity-viscosity and the isotropic plasticity was proposed. The elastic constants were determined using a self-consistent approach, and viscous parameters were modelled by crystal plasticity analyses. The calculation results obtained using the constitutive model were compared with the experimental data to evaluate the validity of the model. It was demonstrated that the constitutive model could satisfactorily describe the anisotropic behaviour under uniaxial and multiaxial stress conditions with a given set of material parameters. 相似文献
4.
E. Rojas J. HortaT. López-Lara J.B. Hernández 《Probabilistic Engineering Mechanics》2011,26(3):481-491
A probabilistic solid-porous model has been developed to determine the shear strength of unsaturated soils. The probabilistic model was built by analyzing the probability of a certain pore or group of pores of a network to fill or remain filled with water during a wetting or drying process, respectively. This model is used to determine the equivalent stress which represents the stress supported by the solid skeleton of an unsaturated soil and is related to the strength of the material. The probabilistic model is an alternative to the use of computational models and shows some important advantages. The theoretical results of the model are compared with a series of triaxial tests performed at constant suction and constant volume. These comparisons demonstrate that this model is adequate to establish the strength of unsaturated materials. 相似文献
5.
A constitutive model for unsaturated soils: thermomechanical and computational aspects 总被引:3,自引:0,他引:3
This paper first presents a complete formulation of a constitutive model that deals with the irreversible behaviour of unsaturated soils under various loading and drying/wetting conditions. A standard form of incremental stress-strain relations is derived. The constitutive model is then cast into the thermodynamical theories and verified using the thermomechanical principles. It is shown that hydraulic hysteresis does not contribute to the plastic dissipation, though it contributes to the plastic work. All plastic work associated with a plastic increment of the degree of saturation is stored and can be recovered in a reversed plastic increment of saturation. The incremental constitutive equations are also reformulated for implementation in finite element codes where displacements and pore pressures are primary unknowns. Qualitative predictions of the constitutive model show that incorporating two suction related yield surfaces and non-associated flow rules into the Barcelona Basic Model opens a full range of possibilities in modelling unsaturated soil behaviour. 相似文献
6.
7.
In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress–strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson–Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user material (UMAT) subroutine utilizing von Mises plasticity theory and an own solution algorithm. A single-element pathological test method is adopted to show the well-development of the UMAT subroutine. In order to verify the proposed constitutive equation for precision predicting of mechanical behavior, a bulge test is performed in which demonstrates a good agreement between experimental and numerical results. 相似文献
8.
Amir SiddiqTamer El Sayed 《Computational Materials Science》2012,51(1):241-251
We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. 相似文献
9.
10.
Based on the Chaboche unified visco-plastic constitutive model, a visco-plastic constitutive model which can take into account non-proportional hardening was proposed for nickel-base alloy at elevated temperature under multiaxial loading. In the proposed multiaxial visco-plastic constitutive model, the non-proportional hardening is considered as a change of kinematic hardening property. The kinematic hardening parameters which can evolve exponentially with the cumulative plastic strain and rotation factor resulted from loading path were proposed to take into account the non-proportional hardening at high temperature under non-proportional loading. Experimental verification showed that the proposed model can accurately predict the peak stresses and the hysteresis loop compared with the original model during the tension-torsion loading process for nickel-base alloy at elevated temperature under non-proportional loading. 相似文献
11.
在B.P. Bazant等人提出的混凝土微平面本构模型M2的基础上,将微平面上的应力分解为体、偏、剪三个分量,根据各个分量的物理意义定义了相应的应力-应变关系函数,即理想弹塑性函数。引入了破断应变的概念,当微平面应变达到破断应变后应力减为零。介绍了模型参数的确定方法。最后通过三个算例初步验证了本文所建议模型的合理性和正确性。 相似文献
12.
Tomonari Furukawa Genki Yagawa 《International journal for numerical methods in engineering》1998,43(2):195-219
Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviours of materials. The fatal problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural networks. In their modelling, inelastic material behaviours are generalized in a state-space representation and the state-space form is constructed by a neural network using input–output data sets. A technique to extract the input–output data from experimental data is also described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit models in accuracy. © 1998 John Wiley & Sons, Ltd. 相似文献
13.
采用大直径分离式霍普金森压杆(SHPB)试验装置研究了多种EPS体积掺量的EPS混凝土在不同应变率下的力学行为。分析了平均应变率以及EPS体积掺量对EPS混凝土的冲击力学性能的影响。采用朱-王-唐(ZWT)模型,在试验研究的基础上,建立了EPS混凝土非线性粘弹性本构模型。结果表明:在高应变率条件下,EPS混凝土的动态抗压强度与极限应变随平均应变率的提高近似线性增长,呈现出显著的应变率相关性。随着EPS体积掺量的增加,混凝土的动态抗压强度和弹性模量降低,变形能力得到改善。本构模型提供的理论曲线与试验曲线比较接近,ZWT模型可以较为准确地描述EPS混凝土的高应变率力学行为。 相似文献
14.
A three-stage constitutive model for the creep behaviours of high-Cr steels at elevated temperatures
Xiaodan Cai 《Materials at High Temperatures》2017,34(1):1-11
In this paper, a three-dimensional constitutive model is proposed to simulate the creep behaviours of high-Cr steels at elevated temperatures. In the model, the minimum creep rate and the average creep rupture time at different temperatures and stress levels are predicted by adopting two Larson–Miller parameters. The decrease of the creep rate during the primary creep stage is captured by introducing an internal variable representing the strain hardening effect. The material parameters of the model can be identified by using the conventional experimental results. Both the strain- and stress-driven algorithms are designed to solve the constitutive evolution equations. The response of high-Cr steels during the whole creep procedure can be predicted at a quantitative level by the current model. Further implementing the model into a finite element software, the global creep behaviours of high-Cr components under realistic loading conditions can be simulated. 相似文献
15.
为了研究Nomex-Kevlar平纹织物对空间碎片的超高速撞击力学特性, 运用LS-DYNA本构模型二次开发技术开发了Nomex-Kevlar平纹织物在超高速撞击条件下的带最大应力失效标准的线弹性正交各向异性本构模型, 并定义了Nomex-Kevlar平纹织物在超高速撞击条件下的Gruneison状态方程参数。运用光滑粒子流体动力学方法和有限元方法建立了与NASA试验工况相同的Al-2017-T4球形弹丸以6.84km/s速度斜向30°撞击Nomex-Kevlar平纹织物的数值分析模型。仿真结果与试验结果的比较表明, 本文中开发的本构模型以及建立的数值分析模型可以准确描述Nomex-Kevlar平纹织物的超高速撞击力学特性。 相似文献
16.
Fu‐de Lu Guang‐jun Hua Li‐shu Wang Hai‐yun Jiang De Gao 《Packaging Technology and Science》2019,32(7):367-379
This paper extends the knowledge into the mechanical behaviour characterizations and constitutive modelling of polyethylene (PE) foam under multiple loading and unloading. The mechanical properties of PE foam subjected to single loading cases can be obtained by uniaxial compressive tests at quasi‐static and dynamic states. And the multiple loading and unloading behaviours of the foam can be revealed by consecutive drop tests. The major objective of this research is to propose a phenomenological model consists of shape function and modulus function, which can be predicted compressive response of PE foam for single loading cases. The constitutive models of foamed PE under multiple loading and unloading conditions are established by both using hyperbolic function, where the relations between coefficients and residual strain are introduced. And then, experiments are conducted to validate the proposed model by comparing the constitutive models proposed in this paper and those predicting by finite element software ABAQUS with those by experiments, showing that the proposed models are more accurate for predicting acceleration‐times curves of multiple drop scenarios. 相似文献
17.
Kyung Jun Lee Min Sung Chun Myung Hyun Kim Jae Myung Lee 《Computational Materials Science》2009,46(4):1152-1162
A series of uniaxial tensile test under cryogenic temperature was carried out for AISI 304 and 316 austenitic stainless steels (ASS) in this study. Typical non-linear hardening phenomena under the cryogenic environment, such as transformation induced strain hardening and threshold strain for the 2nd hardening, has been observed in a quantitative manner.The important factors affecting the non linear material behavior of austenitic stainless steel including phase transformation, discontinuous yielding and micro-damage are modeled using constitutive equations system based on strain decomposition at the small strain formulation. A strong nonlinearity of strain hardening is described using the coupling of modified Bodner’s plasticity model and phase transformation induced strain model. The strain (threshold strain for onset of 2nd hardening) dependent plasticity model was proposed in the hardening function of Bodner’s model. In order to explicitly express the phase transformation induced strain, TI model (Tomita and Iwamoto model [Y. Tomita, T. Iwamoto, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, International Journal of Mechanical Sciences 37 (1995) 1295–1305.]), which is a function of accumulated plastic strain and volume fraction factor of martensite, is selected in this study.Also the unified damage model, which can be connected with elasto-plastic constitutive equation developed in this study, is suggested, and the utility of proposed model was validated by the comparison between experiments and numerical evaluations. 相似文献
18.
为研究针刺C/C-SiC复合材料的剪切损伤行为,首先,进行了面内剪切加卸载实验,并利用SEM对复合材料的剪切破坏形貌进行了观测;然后,建立了一种塑性与损伤相结合的非线性本构模型描述复合材料的非线性力学行为,以幂函数描述等效塑性应变与等效应力的关系;最后,基于剪切强度的Weibull分布规律提出了一种指数型损伤变量表征剪切刚度的退化,并通过实验数据拟合得到模型中的参数。结果表明:复合材料在卸载后存在明显的残余应变,卸载模量随载荷的增加不断降低,表现出明显的剪切非线性特征;大量无纬布纤维束和纤维单丝拔出,且易在针刺部位发生破坏;由于针刺部位等缺陷的不规律分布,剪切强度存在一定的分散性,符合指数型Weibull统计分布规律;复合材料的剪切非线性主要由基体开裂和纤维/基体界面脱粘等内部损伤引起,从宏观上可以解释为塑性变形和刚度性能折减。所得结论表明本构模型能够很好地表征C/C-SiC复合材料的面内剪切非线性行为。 相似文献
19.
为研究混凝土材料的动态性能,利用直径φ100 mm的SHPB(Split Hopkinson Pressure Bar)装置对骨料尺寸为15 mm~20 mm的混凝土材料试样进行了应变率范围30s(-1)~180s(-1)的动态压缩试验,并借助高速摄影装置获得了试样的变形与破坏过程,结果表明:在动态压缩强度附近应力区,材料表面先出现一条沿试样轴向的可见宏观裂纹,而多条主裂纹的形成与扩展才导致材料的最终破坏;建立了改进的ZWT模型,模型预测结果与试验结果较吻合. 相似文献
20.
This paper presents a theoretical framework for modeling the orthotropic elastic properties of microtubules. We propose a constitutive model to describe the detailed microscale information and continuum properties of the microtubules. The microtubule is viewed as being transformed from an equivalent planar structure, a fictitious-bond is introduced to evaluate the system energy and related with deformation gradients, and a representative unit cell is considered to bridge the microscale energy and the continuum strain energy. In a representative unit cell, the tubulin monomers and guanosine molecules are treated as spheroids, and the fictitious-bond vectors are evaluated through the higher-order Cauchy–Born rule. To deal with this polyatomic bio-composite structure that has large quantities of different types of chemical elements, a homogenization technique is performed to calculate the fictitious-bond energy. The structure of the microtubule is thus determined by minimizing the potential of the representative unit cell. With the established model, the fictitious-bond lengths between adjacent molecules are evaluated and the longitudinal and circumferential moduli are calculated. 相似文献