首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In this paper, the boundary element method (BEM) for solving quasi‐static uncoupled thermoelasticity problems in materials with temperature dependent properties is presented. The domain integral term, in the integral representation of the governing equation, is transformed to an equivalent boundary integral by means of the dual reciprocity method (DRM). The required particular solutions are derived and outlined. The method ensures numerically efficient analysis of thermoelastic deformations in an arbitrary geometry and loading conditions. The validity and the high accuracy of the formulation is demonstrated considering a series of examples. In all numerical tests, calculation results are compared with analytical and/or finite element method (FEM) solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
    
In this paper the shear deformable shallow shells are analysed by boundary element method. New boundary integral equations are derived utilizing the Betti's reciprocity principle and coupling boundary element formulation of shear deformable plate and two‐dimensional plane stress elasticity. Two techniques, direct integral method (DIM) and dual reciprocity method (DRM), are developed to transform domain integrals to boundary integrals. The force term is approximted by a set of radial basis functions. Several examples are presented to demonstrate the accuracy of the two methods. The accuracy of results obtained by using boundary element method are compared with exact solutions and the finite element method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The Boundary Element Method is a very effective method for solving linear differential equations. To use it also in the consideration of non-linear problems some different procedures were developed, among them the dual reciprocity method and the particular integral method. Both procedures use interpolation conditions for the approximation with radial basis functions. In this paper a method is presented which avoids problems connected with interpolation by means of quasi-interpolation. It is possible to solve differential equations of the kind Δmu=p(u) approximately; the application to two non-linear problems of plate theory yield good results. Hints to a theoretical examination of the method including sufficient conditions for feasibility and convergence are given. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
A numerical model using the dual reciprocity boundary element method (DRBEM) is developed to study the combined refraction and diffraction of water waves propagating around islands or solid offshore structures over a seabed with a variable depth. Based on the well-known mild-slope equation, the model has been validated by comparison with both analytical solutions and standard numerical solutions available in the literature. The results show that a considerable improvement in terms of numerical efficiency has been achieved with the adoption of the DRBEM and the model has a great potential to be used in engineering practice to solve wave refraction and diffraction problems.  相似文献   

5.
    
In many cases, boundary integral equations contain a domain integral. This can be evaluated by discretization of the domain into domain elements. Historically, this was seen as going against the spirit of boundary element methods, and several methods were developed to avoid this discretization, notably dual and multiple reciprocity methods and particular solution methods. These involved the representation of the interior function with a set of basis functions, generally of the radial type. In this study, meshless methods (dual reciprocity and particular solution) are compared to the direct domain integration methods. The domain integrals are evaluated using traditional methods and also with multipole acceleration. It is found that the direct integration always results in better accuracy, as well as smaller computation times. In addition, the multipole method further improves on the computation times, in particular where multiple evaluations of the integral are required, as when iterative solvers are used. The additional error produced by the multipole acceleration is negligible. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The use of the global approximation functions (elements of Pascal's triangle, sine expansions and others) in the dual reciprocity boundary element method is compared to the better known local radial basis functions for convection, diffusion and other problems in which the volume integrals considered contain first and second derivatives of the problem variables, time derivatives and sums and products of functions, including nonlinear terms. It will be shown that whilst it is possible to obtain accurate solutions to the problems considered using the global functions, a successful solution to a given problem depends very much on the function chosen, as well as other factors.  相似文献   

7.
基于固有应变概念,采用边界元方法,提出一种反方法构造连续的满足域内自平衡条件的平面残余应力场。考虑到反分析的稳定性,固有应变场用一系列光滑基函数(如多项式和三角函数)近似;为了识别由剪切固有应变引起的残余应力,求出对应于固有应变的位移特解与面力特解,将域内积分用双重互易边界元法转换为边界积分,保持了边界元法的优势;同时导出了灵敏度矩阵的显式表达,以提高反分析的效率。最后给出了两个算例验证方法的可行性。  相似文献   

8.
The treatment of domain integrals has been a topic of interest almost since the inception of the boundary element method (BEM). Proponents of meshless methods such as the dual reciprocity method (DRM) and the multiple reciprocity method (MRM) have typically pointed out that these meshless methods obviate the need for an interior discretization. Hence, the DRM and MRM maintain one of the biggest advantages of the BEM, namely, the boundary-only discretization. On the other hand, other researchers maintain that classical domain integration with an interior discretization is more robust. However, the discretization of the domain in complex multiply-connected geometries remains problematic. In this research, three methods for evaluating the domain integrals associated with the boundary element analysis of the three-dimensional Poisson and nonhomogeneous Helmholtz equations in complex multiply-connected geometries are compared. The methods include the DRM, classical cell-based domain integration, and a novel auxiliary domain method. The auxiliary domain method allows the evaluation of the domain integral by constructing an approximately C 1 extension of the domain integrand into the complement of the multiply-connected domain. This approach combines the robustness and accuracy of direct domain integral evaluation while, at the same time, allowing for a relatively simple interior discretization. Comparisons are made between these three methods of domain integral evaluation in terms of speed and accuracy. This work was partially supported by the United States Department of Energy (DOE) grants DE-FG03-97ER14778 and DE-FG03-97ER25332. This financial support does not constitute an endorsement by the DOE of the views expressed in this paper.  相似文献   

9.
A semi-analytic boundary element method for parabolic problems   总被引:1,自引:0,他引:1  
A new semi-analytic solution method is proposed for solving linear parabolic problems using the boundary element method. This method constructs a solution as an eigenfunction expansion using separation of variables. The eigenfunctions are determined using the dual reciprocity boundary element method. This separation of variables-dual reciprocity method (SOV-DRM) allows a solution to be determined without requiring either time-stepping or domain discretisation. The accuracy and computational efficiency of the SOV-DRM is found to improve as time increases. These properties make the SOV-DRM an attractive technique for solving parabolic problems.  相似文献   

10.
This paper presents a new method for determining the natural frequencies and mode shapes for the free vibration of thin elastic plates using the boundary element and dual reciprocity methods. The solution to the plate's equation of motion is assumed to be of separable form. The problem is further simplified by using the fundamental solution of an infinite plate in the reciprocity theorem. Except for the inertia term, all domain integrals are transformed into boundary integrals using the reciprocity theorem. However, the inertia domain integral is evaluated in terms of the boundary nodes by using the dual reciprocity method. In this method, a set of interior points is selected and the deflection at these points is assumed to be a series of approximating functions. The reciprocity theorem is applied to reduce the domain integrals to a boundary integral. To evaluate the boundary integrals, the displacements and rotations are assumed to vary linearly along the boundary. The boundary integrals are discretized and evaluated numerically. The resulting matrix equations are significantly smaller than the finite element formulation for an equivalent problem. Mode shapes for the free vibration of circular and rectangular plates are obtained and compared with analytical and finite element results.  相似文献   

11.
    
In this paper a general boundary element formulation for the three-dimensional elastoplastic analysis of cracked bodies is presented. The non-linear formulation is based on the Dual Boundary Element Method. The continuity requirements of the field variables are fulfilled by a discretization strategy that incorporates continuous, semi-discontinuous and discontinuous boundary elements as well as continuous and semi-discontinuous domain cells. Suitable integration procedures are used for the accurate integration of the Cauchy surface and volume integrals. The explicit version of the initial strain formulation is used to satisfy the non-linearity. Several examples are presented to demonstrate the application of the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
    
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration‐free, boundary‐type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non‐singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection–diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The dual reciprocity boundary element method has been successfully employed to solve general field equations posed in a closed domain, i.e. interior problems. Up to now, however, little effort has been made to extend it to exterior problems (i.e. general field equations posed in an infinite region), which are commonly encountered in engineering practice. In this paper, the interpolation functions associated with exterior problems, which were proposed by Loeffler and Mansur (in Boundary Elements X, Vol. 2, Springer, 1988), are first examined. We have found that the choice of the arbitrary constant, the inclusion of which is necessary in those interpolation functions, has clear effects on the accuracy of the numerical results. A mapping transformation, through which any exterior problem can be solved by solving an equivalent interior problem, is then proposed. Although there are certain regularity conditions attached to such a mapping, they can be easily satisfied if the unknown function satisfies certain regularity conditions at infinity in the original exterior problem. A successful application of this mapping transformation to a transient heat transfer problem demonstrates the good performance of this approach.  相似文献   

14.
    
This work presents a new boundary‐element method formulation called quasi‐dual reciprocity formulation for heat transfer problems, considering diffusive and advective terms. The present approach has some characteristics similar to those of the so‐called dual‐reciprocity formulation; however, the mathematical developments of the quasi‐dual reciprocity approach reduces approximation errors due to global domain interpolation. Some one‐ and two‐dimensional examples are presented, the results being compared against those obtained from analytical and dual‐reciprocity formulations. The method convergence is evaluated through analyses where the mesh is successively refined for various Peclet numbers, in order to assess the effect of the advective term. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The Dual Reciprocity Boundary Element Method (DRBEM) is used to solve incompressible laminar viscous fluid flows and heat transfer. The DRBEM is extended to develop a pressure correction scheme to solve the incompressible Navier-Stokes equations. The velocity field is then used as input to the DRBEM solution of the energy transport equation, thereby retaining the boundary only discretization feature of the BEM for the solution of this problem. Numerical results for the proposed DRBEM solution for laminar flow and heat transfer in a channel are obtained for several Reynolds numbers and compare well with previously published data.  相似文献   

16.
A novel boundary‐only formulation for transient temperature fields in bodies of non‐linear material properties and arbitrary non‐linear boundary conditions has been developed. The option for self‐irradiating boundaries has been included in the formulation. Heat conduction equation has been partially linearized by Kirchhoff's transformation. The result has been discretized by the dual reciprocity boundary element method. The integral equation of heat radiation has been discretized by the standard boundary element method. The coupling of the resulting two sets of equations has been accomplished by static condensation of the radiative heat fluxes arising in both sets. The final set of ordinary differential equations has been solved using the Runge–Kutta solver with automatic time step adjustment. The algorithm proved to be robust and stable. Numerical examples are included. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The dual reciprocity boundary element method (DRBEM) has been established as an effective numerical tool in the modeling of various engineering problems. Here the application of the DRBEM in groundwater flow and pollutant transport is described. Several cases analyzed prove that DRBEM is an effective numerical tool in simulating these problems.  相似文献   

18.
    
The dual reciprocity method is applied to determine the hydrodynamic pressure distribution in a three‐dimensional dam–reservoir system subjected to earthquake excitation. The reservoir domain is idealized as a finite region of irregular geometry adjacent to the dam followed by an infinite domain of uniform cross‐section in the upstream direction. The reservoir hydrodynamic pressure response is governed by the Helmholtz equation subject to free surface, dam–reservoir interface, absorbing bottom/banks and radiation boundary conditions. A three‐dimensional (3D) dual reciprocity model is developed to determine the hydrodynamic pressure in the finite reservoir domain. A radiation matrix is developed and introduced to relate the hydrodynamic pressure and its normal derivative on the interface between the finite and infinite domains. The three‐dimensional radiation model used is developed by applying a two‐dimensional dual reciprocity formulation along the interface of the finite and infinite reservoirs together with a continuum solution in the upstream direction of the infinite domain. The model is compared for the hydrodynamic response of a three‐dimensional rectangular reservoir and found to be in excellent agreement with results obtained from a model based on the analytical formulation existing in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This study investigates the numerical solution of the Laplace and biharmonic equations subjected to noisy boundary data. Since both equations are linear, they are numerically discretized using the Boundary Element Method (BEM), which does not use any solution domain discretization, to reduce the problem to solving a system of linear algebraic equations for the unspecified boundary values. It is shown that when noisy, lower-order derivatives are prescribed on the boundary, then a direct approach, e.g. Gaussian elimination, for solving the resulting discretized system of linear equations produces an unstable, i.e. unbounded and highly oscillatory, numerical solution for the unspecified higher-order boundary derivatives data. In order to overcome this difficulty, and produce a stable solution of the resulting system of linear equations, the singular value decomposition approach (SVD), truncated at an optimal level given by the L-curve method, is employed. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
    
In this paper, new spherical Hankel shape functions are used to reformulate boundary element method for 2‐dimensional elastostatic and elastodynamic problems. To this end, the dual reciprocity boundary element method is reconsidered by using new spherical Hankel shape functions to approximate the state variables (displacements and tractions) of Navier's differential equation. Using enrichment of a class of radial basis functions (RBFs), called spherical Hankel RBFs hereafter, the interpolation functions of a Hankel boundary element framework has been derived. For this purpose, polynomial terms are added to the functional expansion that only uses spherical Hankel RBF in the approximation. In addition to polynomial function fields, the participation of spherical Bessel function fields has also increased robustness and efficiency in the interpolation. It is very interesting that there is no Runge phenomenon in equispaced Hankel macroelements, unlike equispaced classic Lagrange ones. Several numerical examples are provided to demonstrate the effectiveness, robustness and accuracy of the proposed Hankel shape functions and in comparison with the classic Lagrange ones, they show much more accurate and stable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号