首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel polymer electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and a small amount of additive (vinylene carbonate, fluoroethylene carbonate, and ethylene carbonate) are prepared, and their electrochemical properties are investigated. The cathodic limit of the gel polymer electrolytes can be extended to 0 V vs. Li by the formation of a protective solid electrolyte interphase on the electrode surface. Using these gel polymer electrolytes, lithium metal polymer cells composed of a lithium anode and a LiNi1/3Co1/3Mn1/3O2 cathode are assembled, and their cycling performances are evaluated at room temperature. The cells show good cycling performance, comparable to that of a cell assembled with gel polymer electrolyte containing standard liquid electrolyte (1.0 M LiPF6 in ethylene carbonate/diethylene carbonate). Flammability tests and differential scanning calorimetry studies show that the presence of the ionic liquid in the gel polymer electrolyte considerably improves the safety and thermal stability of the cells.  相似文献   

2.
The ternary [Li+][MPPip+][NTf2] ionic liquid, obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in liquid N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MPPipNTf2), was used as an electrolyte, and stable at the lithium or graphite-lithium anodes. The graphite-lithium (C6Li) anode showed good cyclability and Coulombic efficiency in the presence of a molecular additive (10 wt.% of vinylene carbonate, VC) to the ionic liquid. The electrode showed ca. 90% of its initial discharge capacity after 100 cycles. The addition of ethylene carbonate (EC) does not improve the cyclability of the anode to the same degree as that observed in the case of vinylene carbonate.  相似文献   

3.
Dimethyl methylphosphonate (DMMP) was used as a cosolvent to reformulate the nonflammable electrolyte of 1 M LiPF6/EC + DEC + DMMP (1:1:2 wt.) in order to improve the safety characteristics of lithium-ion batteries. The flammability, cell performance, low-temperature performance and thermal stability of the DMMP-based electrolyte were compared with the electrolyte of 1 M LiPF6/EC + DEC (1:1 wt.). The nonflammable electrolyte exhibits good oxidation stability at the LiCoO2 cathode and poor reduction stability at the mesocarbon microbead (MCMB) and surface-modified graphite (SMG) anodes. The addition of vinyl ethylene carbonate (VEC) to the DMMP-based electrolyte provided a significant improvement in the reduction stability at the carbonaceous electrodes. Furthermore, it was found that the addition of DMMP resulted in optimized low-temperature performance and varied thermal stability of the electrolytes. All of the results indicated the novel DMMP-based electrolyte is a promising nonflammable electrolyte to resolve the safety concerns of lithium-ion batteries.  相似文献   

4.
The ternary [Li+]0.09[MePrPyr+]0.41[NTf2]0.50 room temperature ionic liquid was obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([MePrPyr+][NTf2]), and studied as an electrolyte for lithium-ion batteries. The graphite-lithium (C6Li) anode, working together with vinylene carbonate as an additive showed ca. 90% of its initial discharge capacity after 50 cycles. The addition of vinylene carbonate to the neat ionic liquid results in the formation of the protective coating (SEI) on both the lithium and graphite anodes. The SEI formation increases the rate of the charge transfer reaction as well as protects the anode from chemical passivation (corrosion). The graphite-lithium (C6Li) anode shows good cyclability and Coulombic efficiency in the presence of 10 wt.% of vinylene carbonate as an additive to the ionic liquid.  相似文献   

5.
Allyl tris(2,2,2-trifluoroethyl) carbonate (ATFEC) was synthesized as a bi-functional additive of flame retardant and film former in electrolytes for lithium ion batteries (LIBs). The flame retardancy of the additive was characterized with differential scanning calorimetry (DSC) and self-extinguishing time (SET). It is shown that adding 1 vol.% ATFEC in 1 M LiPF6/propylene carbonate (PC) can effectively enhance the thermal stability of the electrolyte and suppress the co-intercalation of PC into the graphitic anode. Further evaluation indicates that the additive hardly affect the conductivity of electrolyte. These support the feasibility of using ATFEC as an additive on formulating an electrolyte with multiple functions such as film-forming enhancement, high thermal stability and high ionic conductivity.  相似文献   

6.
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10−3 S cm−1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g−1 and good cycling performance at 0.2 C rate at room temperature.  相似文献   

7.
The electrochemical behaviors of LiPF6 and lithium oxalyldifluoroborate (LiODFB) blend salts in ethylene carbonate + propylene carbonate + dimethyl carbonate (EC + PC + DMC, 1:1:3, v/v/v) for LiFePO4/artificial graphite (AG) lithium-ion cells have been investigated in this work. It is demonstrated by conductivity test that LiPF6 and LiODFB blend salts electrolytes have superior conductivity to pure LiODFB-based electrolyte. The results show that the performances of LiFePO4/Li half cells with LiPF6 and LiODFB blend salts electrolytes are inferior to pure LiPF6-based electrolyte, the capacity and cycling efficiency of Li/AG half cells are distinctly improved by blend salts electrolytes, and the optimum LiODFB/LiPF6 molar ratio is around 4:1. A reduction peak is observed around 1.5 V in LiODFB containing electrolyte systems by means of CV tests for Li/AG cells. Excellent capacity and cycling performance are obtained on LiFePO4/AG 063048-type cells tests with blend salts electrolytes. A plateau near 1.7-2.0 V is shown in electrolytes containing LiODFB salt, and extends with increasing LiODFB concentration in charge curve of LiFePO4/AG cells. At 1C discharge current rate, the initial discharge capacity of 063048-type cell with the optimum electrolyte is 376.0 mAh, and the capacity retention is 90.8% after 100 cycles at 25 °C. When at 65 °C, the capacity and capacity retention after 100 cycles are 351.3 mAh and 88.7%, respectively. The performances of LiFePO4/AG cells are remarkably improved by blending LiODFB and LiPF6 salts compared to those of pure LiPF6-based electrolyte system, especially at elevated temperature to 65 °C.  相似文献   

8.
A Si thin-film electrode of 200 nm is prepared using E-beam evaporation and deposition on copper foil. The use of a lithium bis(oxalato) borate (LiBOB)-based electrolyte markedly improves the discharge capacity retention of a Si thin-film electrode/Li half-cell during cycling. The surface layer formed on Si thin-film electrode in ethylene carbonate/diethyl carbonate (3/7) with 1.3 M LiPF6 or 0.7 M LiBOB is characterized by means of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopic analysis. The surface morphology of the electrode after cycling is investigated using scanning electron microscopy. The relationship between the physical morphology and the electrochemical performance of Si thin-film electrode is discussed.  相似文献   

9.
Sulfone–ester mixed solvent electrolytes were examined for 5 V-class high-voltage rechargeable lithium cells. As the base-electrolyte, sulfolane (SL)–ethyl acetate (EA) (1:1 mixing volume ratio) containing 1 M LiBF4 solute was investigated. Electrolyte conductivity, electrochemical stability, Li+ ion solvation behavior and cycleability of lithium electrode were evaluated. 13C NMR measurement results suggest that Li+ ions are solvated with both SL and EA. Charge–discharge cycling efficiency of lithium anode in SL–EA electrolytes was poor, being due to its poor tolerance for reduction. To improve lithium charge–discharge cycling efficiency in SL–EA electrolytes, following three trials were carried out: (i) improvement of the cathodic stability of electrolyte solutions by change in polarization through modification of solvent structure; isopropyl methyl sulfone and methyl isobutyrate were investigated as alternative SL and EA, respectively, (ii) suppression of the reaction between lithium and electrolyte solutions by addition of low reactivity surfactants of cycloalkanes (decalin and adamantane) or triethylene glycol derivatives (triglyme, 1,8-bis(tert-butyldimethylsilyloxy)-3,6-dioxaoctane and triethylene glycol di(methanesulfonate)) into SL–EA electrolytes, and (iii) change in surface film by addition of surface film formation agent of vinylene carbonate (VC) into SL–EA electrolytes. These trials made lithium cycling behavior better. Lithium cycling efficiency tended to increase with a decrease in overpotential. VC addition was most effective for improvement of lithium cycling efficiency among these additives. Stable surface film is formed on lithium anode by adding VC and the resistance between anode/electrolyte interfaces showed a constant value with an increase in cycle number. When the electrolyte solutions without VC, the interfacial resistance increased with an increase in cycle number. VC addition to SL–EA was effective not only for Li/LiCoO2 cell with charge cut-off voltage of 4.5 V but also for Li/LiNi0.5Mn1.5O4 cells even with high charge cut-off voltage of 5 V in Li/LiNi0.5Mn1.5O4 cells.  相似文献   

10.
LiCoO2 is the most famous positive electrode (cathode) for lithium ion cells. When LiCoO2 is charged at high charge voltages far from 4.2 V, cycleability of LiCoO2 becomes worse. Causes for this deterioration are instability of pure LiCoO2 crystalline structure and an oxidation of electrolyte solutions LiCoO2 at higher charge voltages. This electrolyte oxidation accompanies with the partial reduction of LiCoO2. We think more important factor is the oxidation of electrolyte solutions. In this work, influence of 10 organic compounds on electrochemical and thermal properties of LiCoO2 cells was examined as electrolyte additives. As a base electrolyte solution, 1 M (M: mol L−1) LiPF6-ethylene carbonate (EC)/ethylmethyl carbonate (EMC) (mixing volume ratio = 3:7) was used. These compounds are o-terphenyl (o-TP), Ph-X (CH3)n (n = 1 or 2, X = N, O or S) compounds, adamantyl toluene compounds, furans and thiophenes. These additives had the oxidation potentials (Eox) between 3.4 and 4.7 V vs. Li/Li+. These Eox values were lower than that (6.30 V vs. Li/Li+) of the base electrolyte. These additives are oxidized on LiCoO2 during charge of the LiCoO2 cells. Oxidation products suppress the excess oxidation of electrolyte solutions on LiCoO2. As a typical example of these organic compounds, o-TP (Eox: 4.52 V) was used to check the fundamental properties of these organic additives. Charge-discharge cycling tests were carried out for the Li/LiCoO2 cells with and without o-TP. Constant current charge at 4.5 V is mainly used as a charge method. Cells with 0.1 wt.% o-TP exhibited slightly better cycling performance and lower polarization than those without additives. Lower polarization arises from a decrease in a resistance of interface between electrolyte solutions and LiCoO2 by surface film formation resulted from oxidation of o-TP. Oxidation products were found by mass spectroscopy analysis to be mixture of several polycondensation compounds made from two to four terphenly monomers. Thermal stability of LiCoO2 with electrolyte solutions did not improve by addition of o-TP. Slightly better charge-discharge cycling properties were obtained by using organic modifiers. However, when industrial applications were considered, drastic improvements have not been obtained yet. One of reasons may be too large influence of the deterioration of stability of pure LiCoO2 structure at high voltage charging for industrial use. We hope to realize the tremendous improvements of high energy, long cycle life and safe lithium cells by the combination of both LiCoO2 with more stable structure such as LiCoO2 treated with MgO and new organic additives with molecular structure more carefully designed.  相似文献   

11.
The electrochemical stability and conductivity of LiPF6 and lithium bis(oxalato)borate (LiBOB) in a ternary mixture of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were compared. The discharge capacities of LiMn2O4/Li cells with the two electrolytes were measured at various current densities. At room temperature, LiMn2O4/Li cells with the electrolyte containing LiBOB cycled equally well with those using the electrolyte containing LiPF6 when the discharge current rate was under 1 C. At 60 °C, the LiBOB-based electrolyte cycled better than the LiPF6-based electrolyte even when the discharge current rate was above 1 C. Compared with the electrolyte containing LiPF6, in LiMn2O4/Li cells the electrolyte containing LiBOB exhibited better capacity utilization and capacity retention at both room temperature and 60 °C. The scanning electron microscopy (SEM) images and the a.c. impedance measurements demonstrated that the electrode in the electrolyte containing LiBOB was more stable. In summary, LiBOB offered obvious advantages in LiMn2O4/Li cells.  相似文献   

12.
Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) salt are potentially a good alternative to LiPF6 since it could both improve the chemical and thermal stability as salt for electrolyte. This work presents a systematic comparative study between LiPF6 and LiTFSI in a mixture of EC/DMC on the basis of some of their physicochemical properties. Transport properties (viscosity and conductivity) are compared at various temperatures from −20 to 80 °C. Using Walden rule, we have demonstrated that LiTFSI 1 M in EC/DMC is more ionic than LiPF6 1 M in the same binary solvent. Moreover, the electrochemical storage properties of an activated carbon electrode were investigated in EC/DMC mixture containing LiTFSI or LiPF6. The specific capacitance Cs of activated carbon was determined from the Galvanostatic charge-discharge curve between 2 and 3.7 V, at low current densities. The capacitance values were found to be 100 and 90 F g−1 respectively for LiTFSI and LiPF6 electrolytes at 2 mA g−1. On the basis of the physicochemical and electrochemical measurements, we have correlated the improvement of the specific capacitance with activated carbon to the increase of the ionicity of the LiTFSI salt in EC/DMC binary system. The drawback concerning the corrosion of aluminium collectors was resolved by adding a few percentage of LiPF6 (1%) in the binary electrolyte. Finally, we have studied the electrochemical behavior of intercalation-deintercalation of lithium in the graphite electrode with EC/DMC + LiTFSI as electrolyte. Results of this study indicate that the realization of asymmetric graphite/activated carbon supercapacitors with LiFTSI based electrolyte is possible.  相似文献   

13.
The compatibility between dimethyl methylphosphonate (DMMP)-based electrolyte of 1 M LiPF6/EC + DMC + DMMP (1:1:2 wt.) and spinel materials Li4Ti5O12 and LiNi0.5Mn1.5O4 was reviewed, respectively. The cell performance and impedance of 3-V LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion cell with the DMMP-based nonflammable electrolyte was compared with the baseline electrolyte of 1 M LiPF6/EC + DMC (1:1 wt.). The nonflammable DMMP-based electrolyte exhibited good compatibility with spinel Li4Ti5O12 anode and high-voltage LiNi0.5Mn1.5O4 cathode, and acceptable cycling performance in the LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell, except for the higher impedance than that in the baseline electrolyte. All of the results disclosed that the 3 V LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion battery was a promising choice for the nonflammable DMMP-based electrolyte.  相似文献   

14.
Electrospun, non-woven membrane of high molecular weight poly(acrylonitrile) (PAN) is demonstrated as an efficient host matrix for the preparation of gel polymer electrolytes for lithium-ion batteries. Electrospinning process parameters are optimized to get a fibrous membrane of PAN consisting of bead-free, uniformly dispersed thin fibers with diameter in the range 880-1260 nm. The membrane with good mechanical strength and porosity exhibits high uptake when activated with the liquid electrolyte of 1 M LiPF6 in a mixture of organic solvents and the gel polymer electrolyte shows ionic conductivity of 1.7 × 10−5 S cm−1 at 20 °C. Electrochemical performance of the gel polymer electrolyte at 20 °C is evaluated in lithium-ion cell with lithium cobalt oxide cathode and graphite anode. Good performance with a low capacity fading on charge-discharge cycling is demonstrated.  相似文献   

15.
A detailed investigation of the effect of the thermal stabilizing additive, propane sultone (PS), on the reactions of the electrolyte with the surface of the electrodes in lithium-ion cells has been conducted. Cells were constructed with meso-carbon micro-bead (MCMB) anode, LiNi0.8Co0.2O2 cathode and 1.0 M LiPF6 in 1:1:1 EC/DEC/DMC electrolyte with and without PS. After formation cycling, cells were stored at 75 °C for 15 days. Cells containing 2% PS had better capacity retention than cells without added PS after storage at 75 °C. The surfaces of the electrodes from cycled cells were analyzed via a combination of TGA, XPS and SEM. The addition of 2% PS results in the initial formation of S containing species on the anode consistent with the selective reduction of PS. However, modifications of the cathode surface in cells with added PS appear to be the source of capacity resilience after storage at 75 °C.  相似文献   

16.
2,2-Dimethoxy-propane (DMP) was studied as an additive in 1 mol dm−3 LiPF6 ethylene carbonate and diethyl carbonate (1:1, w/w) for lithium-ion battery, which was characterized by cyclic voltammetry and half cell tests. Cyclic voltammetry and half cell data show that the use of DMP as an additive to the organic solutions at very low level (ca. 0.005 wt%) offers the advantage of forming fully developed passive films on the graphite anode surface. The electrochemical performance of the additive-containing electrolytes in combination with LiCoO2 cathode and graphitic anode was also tested in commercial cells 103448. The results reveal that the cyclic life test and storage performance at high temperature (ca. 60 °C) in electrolyte with DMP additive was better than that in an electrolyte without additive. Therefore, DMP can be considered as a desirable additive in electrolyte for lithium-ion batteries operating at high temperature, ca. 60 °C.  相似文献   

17.
《Journal of power sources》1996,62(2):219-222
The decomposition of propylene carbonate (PC) at a graphite anode in lithium-ion cells is suppressed remarkably by choosing a proper mixing ratio of PC with co-existing solvents. For example, the decomposition of PC is essentially inhibited using PC-diethyl carbonate (DEC), PC-methylethyl carbonate (MEC) or PC-dimethyl carbonate (DMC) with 1:4 (v/v) mixed solvent solution containing a volume % of PC of less than 25%. Conductivity measurements show that all PC molecules can be solvated to Li+ ions as Li(PC)2 in these mixed solvents, where 1.0 M LiPF6 and 25 vol. % of PC are used. This suggests that the solvated PC molecules are not decomposed at graphite anode.  相似文献   

18.
We studied the effect of salt concentration and solvent ratio on the cycling performance of LiMn2O4 cathode and graphite anode in LiPF6–ethylene carbonate (EC)–ethyl methyl carbonate (EMC) electrolytes. The results show that solvent ratio has negligible impact on the performance of both electrodes but does affect the issues of thermal compatibility and ionic conductivity. Salt concentration affects the performance in two reverse ways: LiMn2O4 cathode requires low concentration, while graphite anode requires high concentration. It is observed that, during the first cycle, both electrodes produce irreversible capacity and form a solid electrolyte interface (SEI) film on their surface. From the view point of operation at low temperatures, 1 M LiPF6 3:7 EC–EMC is recommended for Li-ion cells.  相似文献   

19.
For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn2O4-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16–20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF6 in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at −60 °C using a C/20 discharge rate with cells containing 1.0 M LiPF6 in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF6 in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at −40 °C, while still maintaining a voltage >2.5 V at 100 and 80% state-of-charge (SOC).  相似文献   

20.
Vinylene carbonate (VC) and vinylene trithiocarbonate (VTC) are studied as electrolyte additives in two kinds of electrolytes: (1) propylene carbonate (PC) and diethyl carbonate (DEC) (1:2 by weight) 1 mol dm−3 LiPF6; (2) ethylene carbonate (EC) and DEC (1:2 by weight) 1 mol dm−3 LiPF6. Characterization is performed by cyclic voltammetry, impedance spectroscopy, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and half cell tests. Cyclic life is better in either electrolyte with VC than either electrolyte with/without VTC. SEM shows VC and VTC both form well developed passivation films on the graphite anode, but the films with VTC are thicker than with VC. EIS shows the VTC films have significantly higher charge transfer resistance. The VTC film in PC fails to protect against exfoliation. XPS indicates VTC has different reaction pathways in PC relative to EC. In EC/DEC, VTC forms polymeric C-O-C-like components and sulfide species (C-S-S-C, S and C-S-C). In PC/DEC, VTC does not form polymeric species, instead forming a film mainly containing LiF and Li2S. It appears that a thinner polymeric film is preferential. The specific data herein are of interest, and the general conclusions may help development of improved additives for enhanced Li-ion battery performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号