首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)-nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm−2 as evidenced by a potential decay rate as low as 40 μV h−1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm−2 indicated that the Pt/NMCC hybrid catalyst (new Pt-Co/C) is more stable than the conventional Pt-Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt3Pd1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.  相似文献   

2.
In this study, hybrid (synthesized rGO and commercial carbon black (CB) in various weight ratios) supported Pt catalysts were synthesized by using the supercritical carbon dioxide deposition (scCO2) technique for PEM fuel cells. In hybrid materials, rGO to CB weight ratios were changed in between 90:10 to 50:50 which were compared to their plain materials. The physicochemical and the electrochemical characteristics of the materials were examined by using BET, XRD, TGA, TEM, contact angle and roughness measurements, CV and PEM fuel cell performance tests. All these characterizations showed that the hybrid supported Pt catalysts were successfully synthesized. TEM images of the catalysts confirmed the highly dispersed and small nanoparticle formation (1.9–2.9 nm) via scCO2 deposition technique. Among the hybrid supported catalysts, catalyst having rGO:CB ratio of 70:30 showed the best PEM fuel cell performance. Electrochemical characterization either fuel cell performance test or CV results indicated significantly enhancement in activity with an increase in CB amount in the support.  相似文献   

3.
In the present work, several carbon supported PtSn catalysts with different Pt/Sn atomic ratios were synthesized and characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Both the results of TEM and XRD showed that all in-house prepared carbon supported Pt and PtSn catalysts had nanosized particles with narrow size distribution. According to the primary analysis of XPS results, it was confirmed that the main part of Pt of the as-prepared catalysts is in metallic state while the main part of Sn is in oxidized state. The performances of single direct ethanol fuel cells were different from each other with different anode catalysts and at different temperatures. It was found that, the single DEFC employing Pt3Sn2/C showed better performance at 60 °C while the direct ethanol fuel cells with Pt2Sn1/C and Pt3Sn2/C exhibited similar performances at 75 °C. Furthermore, at 90 °C, Pt2Sn1/C was identified as a more suitable anode catalyst for direct ethanol fuel cells in terms of the fuel cell maximum power density. Surface oxygen-containing species, lattice parameters and ohmic effects, which are related to the Sn content, are thought as the main factors influencing the catalyst activity and consequently the performance of single direct ethanol fuel cells.  相似文献   

4.
Carbon supported Pt and Pt–Co electrocatalysts for the oxygen reduction reaction in low temperature fuel cells were prepared by the reduction of the metal salts with sodium borohydride and sodium formate. The effect of surface treatment with nitric acid on the carbon surface and Co on the surface of carbon prior to the deposition of Pt was studied. The catalysts where Pt was deposited on treated carbon the ORR reaction preceded more through the two electron pathway and favored peroxide production, while the fresh carbon catalysts proceeded more through the four electron pathway to complete the oxygen reduction reaction. NaCOOH reduced Pt/C catalysts showed higher activity that NaBH4 reduced Pt/C catalysts. It was determined that the Co addition has a higher impact on catalyst activity and active surface area when used with NaBH4 as reducing agent as compared to NaCOOH.  相似文献   

5.
We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as anode catalysts for direct formic acid fuel cells (DFAFCs). PtAu alloy nanoparticles are prepared by co-reducing HAuCl4 and H2PtCl6 with NaBH4 in the presence of sodium citrate and then deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal the formation of PtAu alloy nanoparticles with an average diameter of 4.6 nm. Electrochemical measurements show that PtAu/C has seven times higher catalytic activity towards formic acid oxidation than Pt/C. This significantly enhanced activity of PtAu/C catalyst can be attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid.  相似文献   

6.
In this paper, we investigate the CO2 microbubble removal on carbon nanotube (CNT)-supported Pt catalysts in direct methanol fuel cells (DMFCs). The experiments involve the incorporation of near-catalyst-layer bubble visualization and simultaneous electrochemical measurements in a DMFC anodic half cell system, in which CH3OH electro-oxidation generate carbon dioxide (CO2) microbubbles. We observe rapid removal of smaller CO2 bubble sizes and less bubble accumulation on a Pt-coated CNT/CC (Pt/CNT/CC, CC means carbon cloth) electrode. The improved half cell performances of the high CO2 microbubble removal efficiency on the CNT-modified electrode (Pt/CNT/CC) were 34% and 32% higher than on Pt/CC and Pt/CP electrodes, respectively.  相似文献   

7.
The activity of catalyst could be enhanced by the temperature rising, so it is a suitable way to reduce the noble metal loading for the catalyst. However, the corrosion of carbon supports will be remarkable in the high temperature proton exchange membrane fuel cells (HT-PEMFC, >100 °C). This report demonstrated a novel Ti3C2Tx and CNT hybrid material as the catalytic support, and Pt nanowires (Pt NWs) is loaded on the hybrid support to construct the catalyst for HT-PEMFC. The Pt NWs/Ti3C2Tx-CNT performs higher electrochemical activity, better stability than that of commercial Pt/C. The mass activity and specific activity of Pt NWs/Ti3C2Tx-CNT catalysts are 3.89 and 3.02 times as that of Pt/C, respectively. The power densities of HT-PEMFC showed 155.4 mW cm−2 and 182 mW cm−2 at 150 and 180 °C, respectively.  相似文献   

8.
Carbon supported Pt-Cu bimetallic nanoparticles are prepared by a modified NaBH4 reduction method in aqueous solution and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results show that the carbon supported Pt-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4 than the carbon supported pure nanosized Pt catalyst, especially the Pt50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBHFC using Pt50Cu50/C as anode electrocatalyst and Pt/C as cathode electrocatalyst shows as high as 71.6 mW cm−2 power density at a discharge current density of 54.7 mA cm−2 at 25 °C.  相似文献   

9.
In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm−2 Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm−2 for NaBH4/O2 fuel cell at 60 °C, 665 mW cm−2 for NaBH4/H2O2 fuel cell at 60 °C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded.  相似文献   

10.
In this study, thin-film Pt catalysts with ultra-low metal loadings (ranging from 1 to 200 μg cm−2) were prepared by magnetron sputtering onto various carbon-based substrates. Performance of these catalysts acting as anode, cathode, or both electrodes in a proton exchange membrane fuel cell (PEMFC) was investigated in H2/O2 and H2/air mode. As base substrates we used standard microporous layers comprising carbon nanoparticles with polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) supported on a gas diffusion layer. Some substrates were further modified by magnetron sputtering of carbon in N2 atmosphere (leading to CNx) followed by simultaneous plasma etching and cerium oxide deposition. The CNx structure exhibits higher resistance to electrochemical etching as compared to pure carbon as was determined by mass spectrometry analysis of PEMFC exhaust at different cell potentials for both sides of PEMFC. The role of platinum content and membrane thickness was investigated with the above four different combinations of ionomer-free carbon-based substrates. The results were compared with a series of benchmark electrodes made from commercially available state-of-the-art Pt/C catalysts. It was demonstrated that the platinum utilization in PEMFC with magnetron sputtered thin-film Pt electrodes can be up to 2 orders of magnitude higher than with the standard Pt/C catalysts while keeping the similar power efficiency and long-term stability.  相似文献   

11.
Pt nanoparticles are deposited onto graphene sheets via synchronous reduction of H2PtCl6 and graphene oxide (GO) suspension using NaBH4. Lyophilization is introduced to avoid irreversible aggregation of graphene (G) sheets, which happens during conventional drying process. Pt/G catalysts reveal a high catalytic activity for both methanol oxidation and oxygen reduction reaction compared to Pt supported on carbon black (Pt/C). The performance of Pt/G catalysts is further improved after heat treatment in N2 atmosphere at 300 °C for 2 h, and the peak current density of methanol oxidation for Pt/G after heat treatment is almost 3.5 times higher than Pt/C. Transmission electron microscope (TEM) images show that the Pt particles are uniformly distributed on graphene sheets. X-ray photoelectron spectroscopy (XPS) results demonstrate that the interaction between Pt and graphene is enhanced during annealing. It suggests that graphene has provided a new way to improve electrocatalytic activity of catalyst for fuel cell.  相似文献   

12.
Graphene nanoribbons (GNRs) were first used as a novel support material for Pt nanoparticles (NPs) based catalyst for methanol electro-oxidation. Upon oxidation and cutting of multiwall carbon nanotubes (MWCNTs), highly dispersive graphene oxide nanoribbons (GONRs) were obtained, on which metal ions such as PtCl62− can be homogenously deposited. The hybrid catalyst of GNRs supported Pt NPs (Pt/GNR) was further prepared through facile in-situ chemical co-reduction, with a homogeneous distribution of Pt NPs (2–3 nm) on the nanoribbons. Compared to Pt/MWCNT and commercial Pt/XC72R catalysts, Pt/GNR hybrids show much larger electrochemically active surface area, higher electrochemical stability, and better CO tolerance towards electro-oxidation of methanol. Therefore, GNR is a promising alternative two-dimensional support material for electrocatalysts in direct methanol fuel cells.  相似文献   

13.
A key challenge for isopropanol fuel cell is to find efficient catalyst for the catalytic ability improvement of isopropanol electro-oxidation reaction. Here, we anchor Pt nanoparticles on the Ni2P/resin carbon (RC) to form a Pt–Ni2P/RC assembly. Strong interactions at Ni2P–Pt interface induce the Ni2P to donate electrons to stabilize Pt, thus effectively decreasing the adsorbed energy of isopropanol. As a result, Pt–Ni2P/RC exhibits much higher mass activity and better stability than those of Pt/RC and Pt/C. When assembled into a direct isopropanol fuel cell, Pt–Ni2P/RC shows a peak power density of 0.095 W cm−2, which is 31.9% greater than that of Pt/C catalyst. Our results offer a new strategy to stabilize Pt by an electron donor for developing affordable direct isopropanol fuel cells.  相似文献   

14.
The development of highly active and efficient heterogeneous catalytic oxidation system has become an attractive research field. In this paper, a catalyst (RuCo/N-CNT@PEDOT-OH/Pt) from platinum nanoparticles (Pt NPs) supported on hydroxyl-grafted poly(3,4-ethylenedioxythiophene) (PEDOT–OH)-modified RuCo, N-tridoped bamboo-like carbon nanotubes (RuCo/N-CNT) are used for direct methanol fuel cell (DMFC). The electrocatalytic activity of RuCo/N-CNT@PEDOT-OH/Pt is systematically compared with RuCo/N-CNT/Pt (Pt NPs supported on RuCo/N-CNT without PEDOT-OH) in the methanol oxidation reaction (MOR). The growth mechanism of carbon nanotubes and the role of heteroatom doping in the electrocatalytic process is explored. The catalysts show excellent electrocatalytic performance with high stability for MOR. It is found that the mass activity (MA) of the RuCo/N-CNT@PEDOT-OH/Pt (1961.3 mA mg?1Pt) for MOR was higher than that of RuCo/N-CNT/Pt (1470.1 mA mg?1Pt) and the commercial Pt/C catalysts (281.0 mA mg?1Pt), indicating the positive effect of the PEDOT-OH in the electrocatalytic MOR. In addition, density functional theory (DFT) calculations verify the possible mechanism pathways of the obtained RuCo/N-CNT@PEDOT-OH/Pt catalyst. This presented catalyst offers new inspiration for designing efficient electrocatalysts for methanol oxidation.  相似文献   

15.
Electrocatalysts of Rh, Ru, Pt, Au, Ag, Pd, Ni, and Cu supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cells are investigated. Metal/γ-Al2O3 catalysts for NaBH4 and H2O2 decomposition tests are manufactured and their catalytic activities upon decomposition are compared. Also, the effects of XC-72 and multiwalled carbon nanotube (MWCNT) carbon supports on fuel cell performance are determined. The performance of the catalyst with MWCNTs is better than that of the catalyst with XC-72 owing to a large amount of reduced Pd and the good electrical conductivity of MWCNTs. Finally, the effect of electrodes with various catalysts on fuel cell performance is investigated. Based on test results, Pd (anode) and Au (cathode) are selected as catalysts for the electrodes. When Pd and Au are used together for electrodes, the maximum power density obtained is 170.9 mW/cm2 (25 °C).  相似文献   

16.
Platinum (Pt) and platinum–ruthenium (PtRu) nanoparticles supported on Vulcan XC-72 carbon and single-wall carbon nanotubes (SWCNT) are prepared by a microwave-assisted polyol process. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which are uniformly dispersed on carbon, have diameters of 2–6 nm. All the PtRu/C catalysts display the characteristic diffraction peaks of a face centred cubic Pt structure, excepting that the 2θ values are shifted to slightly higher values. The results from XPS analysis reveal that the catalysts contain mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV) and Ru(IV). The electrooxidation of methanol is studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. Both PtRu/C catalysts have high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a single direct methanol fuel cell using the SWCNT supported PtRu alloy as the anode catalyst delivers high power density.  相似文献   

17.
The electrochemical behaviour of fuel cell catalysts (mesoporous Pt (MPPt), MPPtRu, MPPt modified by adsorbed Ru (MPPt/Ru) and carbon supported PtRu alloy) was studied using the thin layer flow cell differential electrochemical mass spectrometry (TLFC-DEMS) technique. The catalysts present high catalytic activity towards the methanol oxidation reaction (MOR), being the PtRu/C electrode the least active for MOR, while MPPt/Ru presents higher current densities for this reaction than MPPtRu. The results suggest that the diffusion properties obtained in the porous structure of the MP electrodes and the surface atomic arrangement in the electrode are the main reasons for the higher catalytic activity achieved. Finally, TLFC-DEMS was proved to be a powerful technique which evaluates and correlates the CO2 efficiency with the catalytic activity and the porous structure of the catalysts.  相似文献   

18.
Synthesis of Pt-based catalysts with high activity and durability for oxygen reduction reaction (ORR) remains a very challenging task in the field of fuel cells. Here, Co-doped Pt nanoparticles (NP) with surface-defect ZrO2 are supported on the multi-walled carbon nanotubes (MWCNTs) (denoted as Pt–Co + ZrO2/MWCNTs). The Pt–Co + ZrO2/MWCNTs displays an ORR mass activity of 0.98 A mgPt?1 at 0.9 V, which is 4.1-fold higher than that of the commercial Pt/C (0.238 A mgPt?1). Further durability test shows that the Pt–Co + ZrO2/MWCNTs remains nearly unchanged ORR mass activity after 50000 accelerated durability testings (ADTs). Based on the mass performance and surface performance, the fuel cell with Pt–Co + ZrO2/MWCNTs cathode has far better power performance than that with commercial Pt/C. Moreover, the fuel cell with Pt–Co + ZrO2/MWCNTs cathode undergo only a 6.1% maximum power loss after 50000 ADTs. However, that with commercial Pt/C cathode after 30000 ADTs has 39.6% maxinum power loss. More impressively, compared to the 220 mV loss of Pt/C after 30000 ADTs, the Pt–Co + ZrO2/MWCNTs cathode also displays only 20 mV loss at 0.8 A/cm2 after 50000 ADTs. The enhanced intrinsic activity of Pt–Co + ZrO2/MWCNTs may be attributed to the Co-doped Pt NPs and interface effect of Co-doped Pt NPs and surface defect-rich ZrO2.  相似文献   

19.
High cost and poor durability of Pt-based cathode catalysts for oxygen reduction reaction (ORR) severely hamper the popularization of proton exchange membrane fuel cells (PEMFCs). Tailoring carbon support is one of effective strategies for improving the performance of Pt-based catalysts. Herein, petroleum vacuum residue was used as carbon source, and nitrogen-doped porous carbon (N-PPC) was synthesized using a simple template-assisted and secondary calcination method. Small Pt nanoparticles (Pt NPs) with an average particles size of 1.8 nm were in-situ prepared and spread evenly on the N-PPC. Interestingly, the lattice compression (1.08%) of Pt NPs on the N-PPC (Pt/N-PPC) was clearly observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which was also verified by the shift of (111) crystal plane of Pt on N-PPC to higher angles. The X-ray photoelectron spectroscopy (XPS) results suggest that the N-PPC support had a strong effect on anchoring Pt NPs and endowing surface Pt NPs with lowered d band center. Thus, the Pt/N-PPC as a catalyst simultaneously boosted the ORR activity and durability. The specific activity (SA) and mass activity (MA) of the Pt/N-PPC at 0.9 V reached 0.83 mA cm−2 and 0.37 A mgPt−1, respectively, much higher than those of the commercial Pt/C (0.21 mA cm−2 and 0.11 A mgPt−1) in 0.1 M HClO4. The half-wave potential (E1/2) of Pt/N-PPC exhibited only a minimal negative shift of 7 mV after 30,000 accelerated durability tests (ADT) cycles. More importantly, an H2–O2 fuel cell with a Pt/N-PPC cathode achieved a power density of 866 mW cm−2, demonstrating that the prepared catalyst has a promising application potential in working environment of PEMFCs.  相似文献   

20.
Cerium-promoted Pt/C catalysts were prepared by one-pot synthesis process and applied as an anode material for CO tolerance in PEM fuel cell. Its physical properties were characterized by XRD and TEM techniques, which indicated that Pt nano-particles are highly dispersed on the carbon supports. The investigation focused on examining the CO tolerance in sulfur acid solution of Pt–CeO2/C compared to Pt/C (JM). The hydrogen oxidation activity was strongly depended on the content of the cerium in the Pt catalyst which was detected by CV, LSV, CO-stripping and EIS techniques. Effect of the anode catalyst poisoning on hydrogen oxidation in the presence of CO was studied in single cells. Pt–CeO2/C catalyst at the appropriate content of 20% Ce presented a very higher CO tolerant activity. A tentative mechanism is proposed for a possible role of a bi-functional synergistic effect between Pt and CeO2 for the enhanced electro-oxidation of CO. CeO2-promoted Pt/C catalyst may be one of the attractive candidates as CO tolerance anode material in PEMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号