共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of activated carbon/DNA composite electrodes to aqueous electric double layer capacitors 总被引:1,自引:0,他引:1
A novel capacitor electrode auxiliary, deoxyribonucleic acid (DNA), is applied to an electric double layer capacitor (EDLC) containing an aqueous 3.5 M NaBr electrolyte. The present electrode is composed of activated carbon (95 wt.%) and DNA (2.5 wt.%) with polytetrafluoroethylene (PTFE) as a binder (2.5 wt.%). An EDLC cell with the DNA-loading electrodes exhibits improved rate capability and discharge capacitance. An EDLC cell with DNA-free electrodes cannot discharge above a current density of 3000 mA g−1 (of the electrode), while a cell with the DNA-loading electrodes can work at least up to 6000 mA g−1. Moreover, an open-circuit potential (OCP) of the DNA-loading electrode sifts negatively with ca. 0.2 V from an OCP of the corresponding electrode without DNA. It is noteworthy that a small amount of DNA loading (2.5 wt.%) to the activated carbon electrode not only improves the rate capability but also adjusts the working potential of the electrode to a more stable region. 相似文献
2.
An acidic cellulose-chitin hybrid gel electrolyte consisting of cellulose, chitin, 1-butyl-3-methylimidazolium, 1-allyl-3-methylimidazolium bromide, and an aqueous H2SO4 solution is investigated for electric double layer capacitors (EDLCs) with activated carbon fiber cloth electrodes. The acidic cellulose-chitin hybrid gel electrolyte shows a high ionic conductivity comparable to that for an aqueous 2 mol dm−3 H2SO4 solution at 0-80 °C. This system's temperature dependence in EDLC performance is investigated by galvanostatic charge-discharge measurement. An EDLC cell with the acidic hybrid gel electrolyte has higher capacitance than that with the aqueous H2SO4 solution in the range of operation temperatures (−10 to 60 °C). Moreover, the capacitance retention of the EDLC cell with the acidic hybrid gel electrolyte is better than that of a cell with the H2SO4 solution at 60 °C over 10,000 cycles. This suggests that the proposed acidic gel electrolyte has excellent stability in the presence of a strong acid, even at a high temperature of 60 °C. 相似文献
3.
Rodrigo L. Lavall Raquel S. Borges Hállen D.R. Calado Cezar Welter João P.C. Trigueiro Jacques Rieumont Bernardo R.A. Neves Glaura G. Silva 《Journal of power sources》2008
An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO4 as polymer electrolyte layer and PEO-NPPP–carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams–Landel–Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 μm and delivered a capacitance of 17 F g−1 with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. 相似文献
4.
Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific double layer capacitance of ca. 120 F g−1 due to their large surface areas. In addition, the large capacitance was still obtained at a large current density up to 10 A g−1, which satisfies demands from the high power application such as hybrid electric vehicles. Capacitance analysis of the hierarchical porous structures revealed the contribution of meso/macropores and micropore to the electric double layer capacitance to be 8.4 and 8.1 μF cm−2, respectively. The results indicated electric double layer is formed even when solvated ions are larger than pore diameters. 相似文献
5.
Bin Xu Feng Wu Daobin Mu Lingling Dai Gaoping Cao Hao Zhang Shi Chen Yusheng Yang 《International Journal of Hydrogen Energy》2010
Mesoporous activated carbons with high surface area have been prepared from PVDC by NaOH activation for non-aqueous electric double layer capacitors (EDLCs). The BET surface area and pore volume of the carbon reach as high as 2675 m2 g−1 and 1.683 cm3 g−1, respectively. The pore size of the carbon distributes mainly in small mesopore of 2∼4 nm, which is ideal for non-aqueous electrolyte EDLCs. The unique microstructure features, i.e. very high surface area and optimized pore size make the carbon present both a high capacitance of 155 F/g and outstanding rate capability in non-aqueous electrolytes. As the current density increases to 18?000 mA/g, it remains 109 F/g, an attractive value for EDLCs. 相似文献
6.
Masayuki Itagaki Satoshi Suzuki Isao Shitanda Kunihiro Watanabe Hiroshi Nakazawa 《Journal of power sources》2007
A new electrode model involving the fractal structure of activated carbon used as electrode material was proposed for an electric double layer capacitor (EDLC). The fractal structure of activate carbon was simulated by branch pore structure of three sizes of cylindrical pores. Three sizes of cylindrical pores were related to macro, meso, and micro pore, since the pore size of activated carbon has wide distribution with a few modes of nm order. The impedance spectrum of EDLC describes the locus of blocking electrode in low frequency range, and the curve at an angle of almost 45° to real axis in high frequency range on the Nyquist plane. The low and high frequency ranges of the impedance spectrum were defined as a lumped constant-type and a distributed constant-type, respectively. Computer simulation of electrochemical impedance with the present electrode model was carried out to understand the relation between the impedance and the electrode structure. The contributions of five parameters to impedance spectrum were discussed, i.e., depth of pore, diameter of pore, specific resistance, the interfacial impedance at electrode/solution, and branch number. The specific resistance p influenced on the shape of impedance spectrum in distributed constant-type range significantly. On other hand, the interfacial impedance at electrode/solution interface controlled the shape of the impedance spectrum in lumped constant-type range. In the course of the curve-fitting to impedance spectrum of EDLC, the separated impedance spectra related to macro, meso, and micro pores were obtained, and the roles of these pores on electric capacity were discussed. 相似文献
7.
A high-energy density hybrid capacitor has been designed in organic electrolyte (1 mol L−1 LiPF6 in 1:1 ethylene carbonate (EC)/dimethyl carbonate (DMC)) using commercial grades of graphite and activated carbon for negative and positive electrodes, respectively. Different approaches have been explored for assembling the hybrid capacitor in order to achieve an optimum ratio between the energy and power density, while keeping a long cycle-life capability. In the optimized hybrid capacitor, the potential of the positive electrode ranges from 1.5 up to 5 V vs. Li/Li+, being extended to the whole stability window of the activated carbon in the organic electrolyte, whereas the potential of the negative electrode remains almost constant at around 0.1 V vs. Li/Li+. After balancing carefully the respective masses of the electrodes and appropriately formatting the system, it was found that a voltage of 4.5 V is the optimal value for avoiding a capacitance fading of the hybrid capacitor during cycling. Gravimetric and volumetric energy densities as high as 103.8 Wh kg−1 and 111.8 Wh L−1, respectively, were obtained. The noticeable value of volumetric energy density is 10 times higher than for symmetric or asymmetric capacitors built with the same activated carbon. 相似文献
8.
Minato Egashira Nozomu Sawada Kazuteru Ueda Nobuko Yoshimoto Masayuki Morita 《Journal of power sources》2010,195(6):1761-9750
Capacitances of a porous carbon electrode in non-aqueous electrolytes containing tetraethylamonium tetrafluoroborate (TEABF4) and a lithium salt with various compositions have been investigated for the potential use in electric double layer capacitor. In the electrolyte prepared by dissolving TEABF4 and LiBF4 into the mixed solvent of ethylene carbonate (EC) with diethyl carbonate (DMC), an activated carbon fiber (ACF) electrode exhibits a larger capacitance than in TEABF4 single salt electrolyte on cyclic voltammograms. The symmetrical capacitor cell containing the LiBF4-TEABF4 mixed salt electrolyte also exhibits larger capacitance on a constant-current test compared with that containing the TEABF4 single salt electrolyte, while the capacitance degradation is observable for this cell at a significant extent, while the test under controlled potential of the ACF electrode to −0.2 to 1.0 V vs. Ag provides somewhat stable capacitance over 30 cycles. 相似文献
9.
New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution 总被引:1,自引:0,他引:1
Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution. 相似文献
10.
Takaya Sato Shoko MarukaneTakashi Morinaga Taichi UemuraKunihiro Fukumoto Satoshi Yamazaki 《Journal of power sources》2011,196(5):2835-2840
We present a new method to improve the rate capability of an electric double layer capacitor (EDLC) using a thin polymer layer having a high concentration of carbon material on a current collector (CLC). A novel thermocuring coating composed of a glycol-chitosan, a pyromellitic acid and a conductive carbon powder can form stable CLC on a metal foil current collector simply by spreading and curing at 160 °C for a couple of minutes. We compared the performance of some demonstration EDLC cells using three kinds of current collector: a conventional aluminum oxide foil for EDLC, an aluminum foil and an aluminum foil with CLC. The cell with the CLC had a much higher rate capability than the cell without CLC. Only the CLC cell was able to discharge at a current density of 500C. This cell shows a slight deterioration in capacity in a high temperature, continuous charging, life test, and the CLC has a suppressing effect on the internal resistance increase of EDLCs. The use of a CLC film current collector is one of the most effective and simple methods for the improvement of EDLC rate performance. In particular, a current collector consisting of aluminum foil coupled with a CLC promises to be a low cost alternative to the aluminum oxide foil commonly used in EDLCs. 相似文献
11.
Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors
Chien-Pin Tien 《Journal of power sources》2010,195(8):2414-20695
A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a “dry” gel-electrolyte system a double layer capacitance as high as 130 F g−1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices. 相似文献
12.
A mathematical model of an electric double layer capacitor is developed treating the capacitance as a matrix instead of a scalar. Model explicitly demonstrates that when two electrodes are immersed an electrolyte and a potential difference applied, a stable double layer that store energy is created. It is suggested that supercapacitors could be modeled on the basis of capacitance matrices whose elements parameterize the geometry of the porous electrode. 相似文献
13.
The electric double layer capacitor (EDLC) should have an almost indefinite life, because the EDLC is charged and discharged by the electrostatic adsorption and desorption of ions on electrodes whose processing involves mass transfers without a chemical reaction. However, the actual life of an EDLC is finite, such that its performance begins to slowly degrade and is significantly deteriorated at some point. We have investigated this phenomenon in detail by analyzing changes in the species of the EDLC during its life. We found that reactions on the positive and negative electrode occurred in phase with the consumption of oxygen, carbon in the electrode materials, and anions in the electrolyte during EDLC charging to change the electrode potentials and the abundance of ions on the electrodes. A product and/or disappearance by the side reactions deteriorated the performance of the active materials. Here we suggest a life process during the float charge of the EDLC and a directional concept for extending its life while comparing experimental data with theoretical models of EDLC charging. 相似文献
14.
Activated carbons (ACs) prepared from rice husk (RH), an agricultural byproduct, have mesoporosity that is obtainable from leaching of the mineral component of silica. To verify the suitability of RH-derived ACs for the use of electrode materials of electrical double-layer capacitors, we evaluated the electrochemical performance of three RH-derived ACs (two micro- and mesoporous ACs and one mesoporous AC). Evaluation was done by using the non-aqueous ionic electrolyte solutions 1 mol dm−3 triethylmethyl ammonium tetrafluoroborate/propylene carbonate (PC) solution, 1.5 mol dm−3 spiro-(1,1′)-bipyrrolidinium tetrafluoroborate/PC (SBP·BF4/PC) solution, and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm·BF4). Under low voltage scan rate (1 mV s−1) and low current density (<1 mA cm−2), mesoporous AC, which had the highest specific surface area, showed the highest specific capacitance (120 F g−1) in EMIm·BF4. However, its specific capacitance considerably decreased because of the increase in scan rate and current density. Under high scan rate (10 and 100 mV s−1) and high current density (>10 mA cm−2), micro- and mesoporous AC in 1.5 mol dm−3 SBP·BF4/PC showed the highest specific capacitance and highest retention of specific capacitance, even though its specific surface area was not the highest. Mesoporous AC showed voltage-dependent specific capacitance, indicating that ionic transport in the mesoporous structure was sensitive to electric field. It was finally shown that micro- and mesoporosity developed by utilizing natural structure and composition of RH was useful for the electrode materials of advanced electrical double-layer capacitors requiring more viscous non-aqueous electrolytes. 相似文献
15.
Activated carbon fibers (ACFs) with super high surface area and well-developed small mesopores have been prepared by pyrolyzing polyacrylonitrile fibers and NaOH activation. Their capacitive performances at room and elevated temperatures are evaluated in electrochemical double layer capacitors (EDLCs) using ionic liquid (IL) electrolyte composed of lithium bis(trifluoromethane sulfone)imide (LiN(SO2CF3)2) and 2-oxazolidinone (C3H5NO2). The surface area of the ACF is as high as 3291 m2 g−1. The pore volume of the carbon reaches 2.162 cm3 g−1, of which 66.7% is the contribution of the small mesopores of 2-5 nm. The unique microstructures enable the ACFs to have good compatibility with the IL electrolyte. The specific capacitance reaches 187 F g−1 at room temperature with good cycling and self-discharge performances. As the temperature increases to 60 °C, the capacitance increases to 196 F g−1, and the rate capability is dramatically improved. Therefore, the ACF can be a promising electrode material for high-performance EDLCs. 相似文献
16.
Atsushi Senda 《Journal of power sources》2010,195(13):4414-12544
Electric double layer capacitance of an activated carbon electrode has been measured for fluorohydrogenate ionic liquids (FHILs) based on five different cations (1,3-dimethylimidazolium (DMIm+), 1-ethyl-3-methylimidazolium (EMIm+), 1-butyl-3-methylimidazolium (BMIm+), 1-ethyl-1-methylpyrrolidinium (EMPyr+), and 1-methoxymethyl-1-methylpyrrolidinium (MOMMPyr+)) at 25 °C. For all the FHILs, the capacitance increases with increase in charging voltage, and exhibits the maximum value around 2.7 V. The capacitances for FHILs are higher than those for EMImBF4 or 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (TEABF4/PC) in the measured range (1.0 < V < 3.2). For the three imidazolium-based FHILs, the maximum capacitance decreases with increase in the size of the cation in the order, DMIm(FH)2.3F (178 F g−1) > EMIm(FH)2.3F (162 F g−1) > BMIm(FH)2.3F (135 F g−1). On the other hand, the maximum capacitance observed for MOMMPyr(FH)2.3F (152 F g−1) is larger than that for EMPyr(FH)2.3F (134 F g−1) in spite of the larger size of MOMMPyr+ than EMPyr+, which is derived from introduction of the methoxy group. Some FHILs with low melting points exhibit a sufficient capacitance even at −40 °C (64 F g−1 for EMIm(FH)2.3F). 相似文献
17.
18.
Ick-Jun Kim Sunhye Yang Min-Je Jeon Seong-In Moon Hyun-Soo Kim Yoon-Pyo Lee Kye-Hyeok An Young-Hee Lee 《Journal of power sources》2007
The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. 相似文献
19.
Carbon nanotube (CNT)-grafting by chemical vapor deposition was conducted to reduce the resistance of activated carbon fiber serving as an electrode for electric double layer capacitors. Sputtering deposition of Ni catalyst particles led to a uniform growth of CNTs on the carbon fiber surface through the tip-growth mechanism. Because sputtering deposition ensures little pore blockage (in comparison with wet-impregnation), the surface area decrease of the carbon fiber due to Ni loading was minimized. By using H2SO4 aqueous solution as the electrolyte, a capacitor cell assembled with the CNT-grafted fiber showed higher electron and electrolyte-ion conductivities relative to a cell assembled with the bare fiber. By increasing the discharging current density from 1 to 150 mA cm−2, the bare fiber exhibited a capacitance loss of 17% while the CNT-grafted fiber showed a mitigated capacitance loss of only 7%. This developed CNT-grafting technique renders activated carbon fiber a promising electrode material for a variety of electrochemical applications. 相似文献
20.
Activated carbons were prepared via a pyrolysis of sucrose followed by activation in the stream of CO2 gas for 2-6 h at 900 °C to tune the pore size distribution (PSD) and increase the specific surface area (SSA). The porosity of the activated sucrose derived carbons (ASCs) has been characterized using N2 sorption measurements. Increasing activation time led to the significant increase in SSA and pore volume of ASCs, among which sucrose derived carbon with 6 h activation time (ASC-6 h) exhibited the highest SSA of 1941 m2 g−1 and the highest micropore volume of 0.87 cm3 g−1. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycle tests have been applied to investigate the capacitive performance of the ASC electrodes in ionic liquids (ILs) at room and elevated temperatures. The ASC-6 h electrodes in ethyl-dimethyl-propyl-ammonium bis (trifluoromethylsulfonyl) imide (EdMPNTf2N) showed specific capacitance in excess of 170 F g−1 at 60 °C, whereas the same electrodes in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) showed slightly lower capacitance but significantly better rate performance. 相似文献