首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was aimed at enumerating the viable microorganisms in ripened Serra da Estrela cheeses, manufactured from both refrigerated and non-refrigerated milk, in various dairies located throughout the demarcated region. Scanning electron microscopy was used to analyze the microstructure, and thus aid in understanding possible differences in their microbiological profile. The cheeses were allowed to ripen under controlled conditions, and sampled at 60, 90, 120, 150 and 180 d following manufacture. Viable numbers of lactic acid bacteria, staphylococci, Enterobacteriaceae and yeasts were obtained following standard plate counting on a number of selective media. Lactococcus was the most abundant genus (above 108 cfu g−1 of cheese) up to 120 d of ripening. No significant microstructural differences were observed in cheeses manufactured in different dairies over the ripening process. However, microstructural differences were apparent between cheeses manufactured with refrigerated versus non-refrigerated milk.  相似文献   

2.
The effect of high-pressure (HP) treatment (400 MPa, 600 MPa) on ripening of mature 42-day-old Irish blue-veined cheese was studied. Counts of non-starter lactic acid bacteria, lactococci, yeasts, moulds, enterococci and total aerobic bacteria significantly decreased due to HP, with moulds being most sensitive and 600 MPa the most effective treatment. The levels of pH 4.6-soluble nitrogen and (12%) trichloroacetic acid-soluble nitrogen increased immediately after both HP treatments; however, after 28 days of storage, values were lower in HP-treated cheeses than in the control cheese. Urea-polyacrylamide gel electrophoresis showed increased breakdown of β-casein due to HP treatment at both 400 MPa and 600 MPa. Levels of free fatty acids were lower in HP-treated cheese than in the control, but not significantly so, and no significant changes could be observed in the level of flavour compounds of blue-veined cheese. Overall, HP treatment of blue-veined cheese reduced microbiological activity and decelerated proteolysis, with no statistically significant effects on development of flavour compounds.Industrial relevanceHigh-pressure treatment has been studied for the past 100 years; nevertheless, it was not applied in dairy industry, until recently, for a cheese spread. In this study, HP-induced inactivation of microbes and enzymes, which could arrest the ripening of high-quality mature (i.e., ripened) Irish farmhouse blue-veined cheese and thus extend shelf-life at optimal quality, was examined.  相似文献   

3.
《International Dairy Journal》2005,15(6-9):893-900
The combined effect of high-pressure (HP) treatment and bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Listeria monocytogenes Scott A in cheeses made from raw milk that was inoculated with the pathogen at 4.80 log cfu mL−1, a commercial starter and one of seven strains of BP-LAB was investigated. On day 3, the counts of L. monocytogenes were 7.03 log cfu g−1 in a control cheese (without BP-LAB, not HP treated), 6.06–6.74 log cfu g−1 in cheeses with BP-LAB, 6.13 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 300 MPa, 2.01 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 500 MPa, 3.83–5.43 log cfu g−1 in cheeses with BP-LAB and treated on day 2 at 300 MPa, and 1.81 log cfu g−1 or less in cheeses with BP-LAB and treated on day 2 at 500 MPa. HP treatment was more effective on day 51 than on day 2.  相似文献   

4.
Cheese milk was standardized (casein-to-fat ratio of 0.7) by blending 0.64% fat milk and 35% fat cream. Cream was homogenized at 0/0 MPa (CO), 3.5/3.5 MPa (H05), 6.9/3.5 MPa (H10) or 10.4/3.5 MPa (H15). Cream homogenization did not influence rennet-clotting time, but it increased rate of curd firming and increased curd firmness of cheese milk. Moisture and salt in moisture phase of cheese increased with homogenization. Moisture (37%) and salt (1.5%) adjusted yield increased 1.42, 3.44 and 3.85% in H05, H10 and H15, respectively, over CO. Homogenized treatment cheeses melted faster with age. Free oil in 1 week old cheeses was lowest in H10 and highest in H05 and increased in all treatments with age. Cheese hardness was not influenced by homogenization but decreased with age. Cheeses with homogenized cream had improved body and texture and flavor. Cream homogenized at 6.9/3.5 MPa was optimal for enhancing Cheddar cheese yield and functionality.  相似文献   

5.
The contributions of the coagulant Cynara cardunculus and of the microflora of raw milk to the volatile-free fatty acid profile of Serra da Estrela cheese were evaluated. The experimental design included both a model system and, dual cheeses. The study in the model system showed that isovaleric acid was the predominant volatile compound after 7 d of ripening. The systems inoculated with Enterococcus faecium produced the highest amount of this volatile (ca. 135.8 mg kg−1 curd), while those inoculated with Lactobacillus plantarum produced the least (21.4 mg kg−1 curd); Lactococcus lactis produced moderate amounts (ca. 34.2 mg kg−1 curd) but a total amount of volatile-free fatty acids similar to those found in control samples. This is considered advantageous since this volatile fatty acid confers a harsh, piquant, mature flavour to cheese, coupled with the realisation that excess volatiles may result in off-flavours. The addition of cultures in experimental cheeses helped reduce ripening time to about one half. Inclusion of Lb. plantarum led to cheeses containing the highest amounts of volatiles, and exhibiting an aroma closest to that of typical Serra da Estrela cheese.  相似文献   

6.
Commercial samples of fresh and mature Halloumi cheeses made from ovine or bovine milk were studied in order to establish their chemical, microbiological and sensory characteristics. Significant differences were observed between the two types of Halloumi cheese both when fresh and mature. The free volatile fatty acid (FVFA) content of the cheeses increased with maturation from 483 to 1356 mg kg−1 for the ovine product, but lower values (380–1248 mg kg−1) were found in the bovine cheese. During maturation for 40 days, Enterococcus faecium, which dominated the microflora of fresh ovine cheese, was replaced by lactobacilli, including a new species, Lactobacillus cypricasei, which was not found in the bovine samples. Fewer than 100 cfu g−1 lactic acid bacteria (LAB) were present in the fresh bovine cheeses, but a microflora dominated by lactobacilli developed with time. Yeast counts in the mature ovine and bovine cheeses reached 2.3–2.8×105 cfu g−1 and, as some of the yeasts were proteolytic and/or lipolytic, it was assumed that they were having a positive impact of the flavour of the cheeses. The sensory panel distinguished significant differences in texture and flavour between the fresh and mature samples of both ovine and bovine cheeses and, overall, there was a significant preference for the ovine brand.  相似文献   

7.
Ovine brined cheese was high-pressure (HP) treated at 200 or 500 MPa for 15 min at 20 °C on the 15th day of ripening. Compared to control cheese, HP treatment did not affect significantly (P > 0.05) the pH values, moisture, fat in dry matter, protein in dry matter and salt in moisture contents of cheeses at 90 days. The counts of total aerobic mesophilic bacteria, thermophilic lactococci, thermophilic lactobacilli and non starter lactic acid bacteria (NSLAB) were not affected by HP treatment of cheese at 200 MPa throughout ripening. After 90 days of ripening, the same microbial groups in cheese treated at 500 MPa were about 1.2, 3.6, 2.1 and 4 log units lower than in control cheese respectively. Coliforms were reduced faster at non detectable levels in HP treated cheeses than in control cheese. Regarding the bacterial enzymatic activities in cheese, aminopeptidase activity (Apep) was marginally favoured by both HP treatments. However, its activity was decreased at 90 days due probably to loss in brine. In contrast, lactate dehydrogenase (LDH) activity, following the bacteria cell lysis, was negatively affected by HP treatment at 500 MPa throughout ripening.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on ovine cheese in brine can be used to reduce effectively the undesirable microbial load in it and to cause moderate enhancement of aminopeptidase activity, without modifying its composition.  相似文献   

8.
Galotyri is a traditional Greek soft acid-curd cheese, which is made from ewes’ or goats’ milk and is consumed fresh. Because cheese processing may allow Listeria monocytogenes post-process contamination, this study evaluated survival of the pathogen in fresh cheese during storage. Portions (0.5 kg) of two commercial types (<2% salt) of Galotyri, one artisan (pH 4.0±0.1) and the other industrial (pH 3.8±0.1), were inoculated with ca. 3 or 7 log cfu g−1 of a five-strain cocktail of L. monocytogenes and stored aerobically at 4°C and 12°C. After 3 days, average declines of pathogen's populations (PALCAM agar) were 1.3–1.6 and 3.7–4.6 log cfu g−1 in cheese samples for the low and high inocula, respectively. These declines were independent (P>0.05) of the cheese type or the storage temperature. From day 3, however, declines shifted to small or minimal to result in 1.4–1.8 log cfu g−1 of survivors at 28 days of storage of all cheeses at 4°C, indicating a strong “tailing” independent of initial level of contamination. Low (1.2–1.7 log cfu g−1) survival of L. monocytogenes also occurred in cheeses at 12°C for 14 days, which were prone to surface yeast spoilage. When ca. 3 log cfu g−1 of L. monocytogenes were inoculated in laboratory scale prepared Galotyri of pH ≅4.4 and ≅3% salt, the pathogen died off at 14 and 21 days at 12°C and 4°C, respectively, in artisan type cheeses fermented with the natural starter. In contrast, the pathogen survived for 28 days in cheeses fermented with the industrial starter. These results indicate that L. monocytogenes cannot grow but may survive during retail storage of Galotyri despite its low pH of or slightly below 4.0. Although contamination of Galotyri with L. monocytogenes may be expected low (<100 cfu g−1) in practice, that long-term survival of the pathogen in commercial cheeses was shown to be unaffected by the artificial contamination level (3 or 7 logs) and the storage temperature (4°C or 12°C), which should be a concern.  相似文献   

9.
High pressure processing (HPP) reduces the glycolytic activity of lactic acid bacteria (LAB) and provides a means to control further production of acidic metabolites in fermented dairy products during storage. However, there is limited information on the effects of HPP on specific enzymes of dairy starter bacteria responsible for the metabolism of lactose. The aim of this study was to determine pressure-induced inactivation of glycolytic enzymes in Lactococcus lactis subsp. lactis C10, Streptococcus thermophilus TS1 and Lactobacillus acidophilus 2400. Cultures were grown for 16 h in M17 or MRS broth containing 5% (w/v) lactose at pH 6.5 (maintained by addition of 10 M NaOH). The cells were harvested by centrifugation, washed and resuspended in 100 mM phosphate buffer (pH 6.5) and pressure-treated at 300 and 600 MPa (≤ 22 °C, 5 min). The ability of pressure-treated resting cells of Lactococcus, incubated with 5% (w/v) lactose at 30 °C, to ferment lactose was evaluated by determining titratable acidity (TA) during incubation. The activities of phospho-β-galactosidase (P-β-gal), β-galactosidase (β-gal) and lactate dehydrogenase (LDH) were determined in cell-free extracts of untreated and pressure-treated cells. Resting cells of Lactococcus treated at 600 MPa had a substantially lower rate of acidification than the controls and those treated at 300 MPa. Both P-β-gal and β-gal were significantly inactivated (p < 0.01) in the starter cultures treated at 300 or 600 MPa. The LDH in Lactococcus and Lactobacillus was highly resistant to pressure treatment at 300 MPa. In contrast, the LDH in Streptococcus was almost completely inactivated at ≥ 300 MPa.Industrial relevanceContinuing production of acidic metabolites in fermented dairy products during storage can be a technological challenge that adversely affects product quality. The current study demonstrates that high pressure processing (HPP) offers the potential of controlling this problem by inactivation of glycolytic enzymes in various mesophilic and thermophilic starter cultures. The findings of this research will assist in establishing optimised operating parameters for HPP treatment of cultured products to extend shelf-life, by reducing acid production during storage.  相似文献   

10.
Cheese ripening acceleration is of continuous interest for the industry. High-pressure (HP) treatment of starter cultures used in cheese-manufacturing offers the potential to accelerate ripening by increasing the activity of their intracellular peptidases that contribute in the development of desired cheese organoleptic characteristics.The objective of the present research was the investigation of the effect of HP treatment (200 MPa-20 °C - 20 min) directly on white brined cheese or on the starter culture used for its manufacture (Str. thermophilus:L. lactis:L. bugaricus 2:1:1). For this purpose, the microbial, textural, physicochemical and organoleptic characteristics and proteolysis were assessed during the 2nd stage of ripening in cold stores. Control cheese without any treatment was also studied.Cheeses made with HP-treated starters had increased secondary proteolysis. Organoleptic scoring of these cheeses was higher during the whole storage period compared to control and HP-treated cheese. Their superiority was evident even at the early stages of ripening in cold stores, since no bitterness was detected. On the contrary, although HP treated cheeses showed the highest increase in aminopeptidases activities, this was not correlated with the studied ripening indices or the organoleptic characteristics.According to the results, HP-treated starter culture can accelerate proteolysis and potentially the ripening of cheese-in-brine.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on cheeses in brine starter cultures or on whole cheeses can be effectively used for the production of products with reduced ripening time. This is of great importance for the cheese industries, since the storage period for ripening is long (higher than two months), while applying HP treatment as suggested in this study, this time may be reduced to less than one month, producing cheeses of superior quality.  相似文献   

11.
《Food microbiology》2004,21(3):343-349
One hundred and fifty-eight strains of lactic acid bacteria isolated from Algerian raw goat's milk were identified and technologically characterized. Five genera were found: Lactobacillus (50.63%), Lactococcus (25.94%), Streptococcus (14.56%), Leuconostoc (7.59%) and Pediococcus (1.26%). The predominant species were Lactococcus lactis (32 strains), Streptococcus thermophilus (23 strains), Lactobacillus bulgaricus (19 strains), Lb. helveticus (16 strains) and Lb. plantarum (14 strains).Approximately 39% of the lactic acid bacteria isolated produced more than 0.6% lactic acid (w/v) after 18 h of incubation, and belonged to the Lactococcus and Lactobacillus genera. The highest proteolytic activity was approximately 3 mg tyrosine l−1 for mesophilic strains and nearly 5 mg tyrosine l−1 for thermophilic lactobacilli after 72 h. High aromatic activity (more than 0.8 mg diacetyl l−1 after 16 h) was detected in 14% of the strains.Nine strains were used to make dairy products (a yoghurt-like product and Edam-type cheese) on a pilot scale in the laboratory. The best-liked organoleptic characteristics were noted in a yoghurt produced with a mixed culture made up of S. thermophilus (strain 16TMC+) and Lb. helveticus (strain 20TMC) and in a cheese made with a starter composed of Lc. lactis subsp. lactis (strain 10MCM) and L. lactis subsp. lactis (V.P. +) (strain 19MCM).  相似文献   

12.
Bovine lactoferrin and lactoferricin B, well-known for their antimicrobial properties, were individually immobilized on two different coatings functionalized with − COOH groups deposited in the inner part of polyethylene micro tubes by means of a plasma deposition (PE-CVD) process fed with ethylene and acrylic acid vapors. The resulting functionalized tubes were tested for antimicrobial activity against three Pseudomonas strains responsible for casein hydrolysis and cheese pigmentation. The cell counts of these spoilage bacteria, incubated for 30 h under their optimal growth conditions, were found to be significantly reduced after 24 h in micro tubes functionalized with lactoferricin B, whereas a very low antimicrobial activity against the same strains, often undistinguishable from that of control samples, was observed in tubes functionalized with lactoferrin.This is the first work in which a plasma coating functionalized by lactoferricin B was studied to make an active packaging useful to control cheese spoilage by Pseudomonas.Industrial relevanceThe current study describes a new method to immobilize two food grade proteinaceous natural compounds. The resulting plasma-functionalized lactoferricin B-immobilized coating is a promising tool for the control of spoilage microorganisms and shelf-life extension of cheeses.  相似文献   

13.
A protocol for the preparation of miniature washed-curd cheeses under controlled bacteriological conditions was designed and tested for reproducibility. The process was adapted from “Saint-Paulin” technology, and involves inoculation and renneting in autoclaved bottles, and cutting, stirring, curd washing and removal of whey by centrifugation. Pressing was simulated by low-speed centrifugation. All operations were performed using sterile techniques and autoclaved equipment. Forty miniature cheeses (approximately 40 g) were produced over 10 working days, and ripened for 28 days. Gross composition (dry matter, salt-in-moisture and pH) of the one-day-old cheeses did not differ significantly between cheesemaking days, and average values were 45.16 , 2.46 and 5.15%, respectively. Adventitious Lactobacillus population remained less than 200 CFU g−1 all during ripening, and phages were absent. Nitrogen soluble at pH 4.4 and in phosphotungstic acid attained 21 and 3% of total nitrogen, respectively, in 28-day-old cheeses. The proposed model was shown to be suitable for the preparation of miniature cheese specimens for use in microbiological studies of cheese manufacture and ripening.  相似文献   

14.
《International Dairy Journal》2000,10(5-6):369-373
Feta cheese (five trials) of different sodium content was made from split lots of curd by varying the salting procedure, i.e. dry salting with NaCl (control) or mixtures of NaCl/KCl (3 : 1 or 1 : 1, w/w basis) and filling the cans with brine made with NaCl or the above NaCl/KCl mixtures, respectively. Lipolysis in cheese was monitored during aging by using the acid degree value (ADV) method and gas chromatography (GC). It was found that the ADVs of control and experimental cheeses were similar (P>0.05) at all sampling ages (3, 20, 40, 60, 120 and 240 d). Moreover, the results of GC showed that there were neither qualitative nor significant (P>0.05) quantitative differences in the individual free fatty acids (FFA) of the control and experimental cheeses at the ages of 40 and 120 d. These findings indicated that the partial substitution of NaCl by KCl in the manufacture of Feta cheese had no effect on lipolysis during cheese aging.  相似文献   

15.
《Food chemistry》2005,93(1):73-80
Lipolysis was studied during ripening of traditional Feta cheese produced in two small dairies, A and B. The cheeses were made from a thermized mixture of ewes’/goats’ milk by using yoghurt as starter and artisanal rennet from lambs’ and kids’ abomasa (cheese A) or mixed artisanal rennet with calf rennet (cheese B).The acid degree value and the free fatty acids (FFA) contents in both cheeses increased sharply up to 18 d (pre-ripening period at 15 °C) and continued to increase throughout ripening. In both mature cheeses, acetic acid was found at high levels (13–18% of the total FFAs). However, except for this, all FFA contents differed significantly (P < 0.05) between the two cheeses throughout ripening. The levels of individual and total C2:0–C8:0, C10:0–C14:0 and C16:0–C18:2 fatty acids were significantly higher (P < 0.05) in cheese A than in cheese B. Presumably the difference, especially in the C2:0–C8:0 content, was due mainly to the type of the rennet used. Butyric acid was the dominant FFA in cheese A (20% of the total FFAs at 120 d), while the most abundant FFAs in cheese B were capric (18%) and lauric acid (18%). In general, the lipolysis degree of the two cheeses was higher than those reported for the industrially-made Feta cheese.In organoleptic evaluation, cheese A had a piquant taste that was attributed to its high content of butyric acid and showed a significantly (P < 0.05) higher total score than cheese B.  相似文献   

16.
《International Dairy Journal》2007,17(10):1254-1258
The present study evaluated the use of nisin as an antimicrobial treatment for shelf-life extension of Galotyri, a Greek soft acid-curd cheese, stored aerobically under refrigeration for a period of 42 days. Three different treatments were tested: N0, control sample with no nisin added; N1, 50 IU g−1 nisin; and N2, 150 IU g−1 nisin, the latter two treatments added post-production to the Galotyri cheese. Of all microorganisms enumerated, lactobacilli, lactococci and yeasts were the groups that prevailed in cheese samples, irrespective of antimicrobial treatment. Based primarily on sensory evaluation (appearance and taste) and a microbiological acceptability limit for yeasts (5 log cfu g−1), the use of nisin treatments extended the shelf-life of fresh Galotyri cheese stored at 4 °C by ca. 7 days (N1) and 21 days (N2) with cheese maintaining good sensory characteristics.  相似文献   

17.
The biochemical, physical and sensory characteristics of ewe milk cheeses made with reuterin-producing Lactobacillus reuteri and glycerol (substrate for reuterin production) were assessed. Cheese made with lactococci starter (CTRL), cheese made with starter and L. reuteri (SLR), and cheese made with starter, L. reuteri and 30 mM glycerol (SLR-G) were manufactured. L. reuteri reached counts above 7 log cfu/g on day 1. Lactococci survival was enhanced in SLR cheese without affecting cheese pH, dry matter, proteolysis, concentration of most free amino acids (FAA), textural and most color parameters, or sensory characteristics. In situ production of reuterin by L. reuteri was only detected in SLR-G cheese, decreasing LAB counts although acidification remained unaffected. SLR-G cheese showed higher values of cell free aminopeptidase activity, overall proteolysis and FAA, particularly glutamic acid, than CTRL and SLR cheeses. The addition of L. reuteri-glycerol resulted in lower hardness and elasticity values in SLR-G cheese and influenced its L*, a* and b* color parameters. However, these changes, which were detected by instrumental analysis, did not affect the sensory scores for texture and color quality of SLR-G cheese, and it received the highest scores for taste quality. Our results suggest that L. reuteri-glycerol may provide a suitable system to release the antimicrobial reuterin in cheese without affecting negatively its sensory characteristics.  相似文献   

18.
《International Dairy Journal》2005,15(6-9):571-578
The production of biogenic amines (BA) during the manufacturing and ripening of sheep milk Pecorino Abruzzese cheeses prepared from raw milk without starter culture (A) and from pasteurized milk with added starter (B) were compared. At the end of ripening (60 days), the total BA contents of cheeses of batches A and B were 697 and 1086 mg kg−1, respectively; the dominant BA were different. Single isolates of enterococci, pseudomonads and Enterobacteriaceae were screened for their potential to produce BA. Qualitative tests indicated a large spread of BA-forming cultures among the members of the Enterobacteriaceae and lactic acid bacteria (LAB). Differences among the levels of BA produced in UHT milk by representative isolates of coliforms, Pseudomonas and LAB were observed in relation to the microbial group or the isolate. The results emphasize the need to improve the general hygienic conditions of Pecorino Abruzzese cheese manufacture and control the indigenous bacterial population.  相似文献   

19.
Pasteurized (65°C, 30 min), pressurized (400 MPa, 22°C, 15 min) and pasteurized–pressurized milks were used for reduced-fat (approximately 32% of total solids) cheese production. Pressurization of milk increased the yield of reduced-fat cheese through an enhanced β-lactoglobulin and moisture retention. In addition, pressurisation of pasteurized skim milk improved its coagulation properties. The cheeses made from pasteurized–pressurized and pressurized milks showed a faster rate of protein breakdown than the cheese made from pasteurized milk, that might be mainly attributed to a higher level of residual rennet. Hardness of the experimental cheeses, as determined by both the sensory panel and instrumental analyses, decreased as the moisture content and proteolytic degradation of the cheese increased (pasteurized>pressurized>pasteurized–pressurized). In general terms, pressurization of reduced-fat milk prior to cheese-making improved cheese texture and thus accounted for a higher overall acceptability, except for the cheeses made from pasteurized–pressurized milk at 60 d of ripening, whose acceptability score was adversely affected by bitterness.  相似文献   

20.
The relationships between growth of Staphylococcus aureus and production of deoxyribonuclease and enterotoxin A in cheese were evaluated. Conditions of cheese manufacture, such as the nature of milk used (heated or raw), type of lactic starter, and degree of starter activity, influenced deoxyribonuclease production. There was a close correlation between the S. aureus population and deoxyribonuclease content (correlation .88 in Cheddar and Colby cheeses for normal or inhibited starter, and .85 in Brick cheese for normal starter). Conditions which affected deoxyribonuclease production also had a similar influence on production of enterotoxin A. Detection of the former is especially useful in cheeses which may have had a partial starter failure not detected by the usual criteria of starter activity such as the titratable acidity of whey or the final pH of cheese. While the viable S. aureus population declined during aging, both deoxyribonuclease and enterotoxin A persisted for an extended time (3 yr at 4.4 C) in cheese of normal or inhibited starter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号