首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Actin-binding protein-280 (ABP-280) is a dimeric actin filament crosslinking protein that promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. We have mapped the ABP-280 filamin gene (FLN) to Xq28 by Southern blot analysis of somatic cell hybrid lines, by fluorescence in situ hybridization, and through identification of portions of the FLN gene within cosmids and YACs mapped to Xq28. The FLN gene is found within a 200-kb region centromeric to the G6PD locus and telomeric to DSX52 and the color vision locus.  相似文献   

2.
Tissue factor (TF), the protease receptor initiating the coagulation system, functions in vascular development, angiogenesis, and tumor cell metastasis by poorly defined molecular mechanisms. We demonstrate that immobilized ligands for TF specifically support cell adhesion, migration, spreading, and intracellular signaling, which are not inhibited by RGD peptides. Two-hybrid screening identified actin-binding protein 280 (ABP-280) as ligand for the TF cytoplasmic domain. Extracellular ligation of TF is necessary for ABP-280 binding. ABP-280 recruitment to TF adhesion contacts is associated with reorganization of actin filaments, but cytoskeletal adaptor molecules typically found in integrin-mediated focal contacts are not associated with TF. Chimeric molecules of the TF cytoplasmic domain and an unrelated extracellular domain support cell spreading and migration, demonstrating that the extracellular domain of TF is not involved in the recruitment of accessory molecules that influence adhesive functions. Replacement of TF's cytoplasmic Ser residues with Asp to mimic phosphorylation enhances the interaction with ABP-280, whereas Ala mutations abolish coprecipitation of ABP-280 with immobilized TF cytoplasmic domain, and severely reduce cell spreading. The specific interaction of the TF cytoplasmic domain with ABP-280 provides a molecular pathway by which TF supports tumor cell metastasis and vascular remodeling.  相似文献   

3.
Glycoprotein (GP)Ib-IX-V is one of the major transmembrane complexes present on the platelet surface. Its extracellular domain binds von Willebrand factor (vWF) and thrombin, while its intracellular domain associates tightly with the cytoskeleton through the actin-binding protein (ABP)-280, also known as filamin. In the present study, a full-length cDNA coding for a human ABP homologue has been cloned and sequenced. This protein was identified by the yeast two-hybrid screening procedure via its interaction with the intracellular domain of GPIbalpha. Initially, a 1.3-kb partial cDNA was isolated from a megakaryocyte-like cell line (K562) cDNA library followed by a full-length cDNA of 9.4 kb that was identified in a human placenta library. The full-length cDNA encoded a protein of 2,578 amino acids with a calculated molecular weight of 276 kD (ABP-276). The amino terminal 248 amino acids contained an apparent actin binding domain followed by 24 tandem repeats each containing about 96 amino acids. The amino acid sequence of the protein shared a high degree of homology with human endothelial ABP-280 (70% identity) and chicken filamin (83% identity). However, the 32 amino acid Hinge I region in ABP-280 that contains a calpain cleavage site conferring flexibility on the molecule, was absent in the homologue. An isoform containing a 24 amino acid insertion with a unique sequence at the missing Hinge I region was also identified (ABP-278). This isoform resulted from alternative RNA splicing. ABP-276 and/or ABP-278 were present in all tissues examined, but the relative amount varied in that some tissue contained both forms, while other tissue contained predominately one or the other.  相似文献   

4.
By immunofluorescence microscopic observation, monoclonal and polyclonal antibodies against a synthetic actin C-terminal peptide were found to stain too colloguial, ambiguous punctuate structures distributed throughout the cytoplasm of 3Y1 cells, independently of actin stress fibers. Antibody against rab5, a small GTP binding protein of the sorting endosome, and anti-actin antibody co-stained these punctuate structures. On the other hand, transferrin receptor, a well characterized maker of the sorting and recycling endosomes, colocalized with actin on the vesicular structures at the cell peripheral region but not at the perinuclear area where the recycling endosome localized. These observations suggest that actin molecules localize on the sorting endosomes. Tropomyosin, F-actin binding protein, also colocalized with actin on the sorting endosomes. From these results, we proposed that actin-filaments with tropomyosin constitute the membrane skeleton on the sorting endosome surface. This article is the first report to show that actin-filaments localize on the intact endosomes.  相似文献   

5.
The role of clathrin in intracellular sorting was investigated by expression of a dominant-negative mutant form of clathrin, termed the hub fragment. Hub inhibition of clathrin-mediated membrane transport was established by demonstrating a block of transferrin internalization and an alteration in the intracellular distribution of the cation-independent mannose-6-phosphate receptor. Hubs had no effect on uptake of FITC-dextran, adaptor distribution, organelle integrity in the secretory pathway, or cell surface expression of constitutively secreted molecules. Hub expression blocked lysosomal delivery of chimeric molecules containing either the tyrosine-based sorting signal of H2M or the dileucine-based sorting signal of CD3gamma, confirming a role for clathrin-coated vesicles (CCVs) in recognizing these signals and sorting them to the endocytic pathway. Hub expression was then used to probe the role of CCVs in targeting native molecules bearing these sorting signals in the context of HLA-DM and the invariant chain (I chain) complexed to HLA-DR. The distribution of these molecules was differentially affected. Accumulation of hubs before expression of the DM dimer blocked DM export from the TGN, whereas hubs had no effect on direct targeting of the DR-I chain complex from the TGN to the endocytic pathway. However, concurrent expression of hubs, such that hubs were building to inhibitory concentrations during DM or DR-I chain expression, caused cell surface accumulation of both complexes. These observations suggest that both DM and DR-I chain are directly transported to the endocytic pathway from the TGN, DM in CCVs, and DR-I chain independent of CCVs. Subsequently, both complexes can appear at the cell surface from where they are both internalized by CCVs. Differential packaging in CCVs in the TGN, mediated by tyrosine- and dileucine-based sorting signals, could be a mechanism for functional segregation of DM from DR-I chain until their intended rendezvous in late endocytic compartments.  相似文献   

6.
A study was made of an association of small GTPase Rab7, commonly considered as a marker of late endosomes, with endosomal compartments of cells expressing EGF receptor with different ability to be sorted for degradative pathway. It was found that in cells HER14, expressing normal EGF receptor, Rab7 was associated with both early and late endosomes and the extent of association correlated with the number of EGF-receptor complexes in the specific endosomal fraction. Cels with a receptor, lacking major sites of autophosphorylation by deletion of 126 C-terminal residues (CD126), demonstrated a low efficiency of EGF-receptor sorting to late endosomes and decreased association dynamics with Rab7. Interaction of Rab7 with endosomes of cells expressing kinase negative receptors (K721) was found to be minimal. At the same time, in cells Cd126 and K721 with a low sorting efficiency Rab7 was mainly associated with early endosomes. These data favor Rab7 involvement in mediating early-to-late endosomal transition.  相似文献   

7.
The 35-amino acid cytoplasmic tail of the adhesion receptor P-selectin is subdivided into stop transfer, C1 and C2 domains. It contains structural signals needed for targeting this protein to specialized secretory organelles and to lysosomes. Recently, using site-directed mutagenesis of horseradish peroxidase-P-selectin chimeras, we have uncovered a novel sequence within the C1 domain, KCPL, that mediates sorting from early, transferrin-positive endosomes to lysosomes and therefore operates as a positive lysosomal targeting signal (Blagoveshchenskaya, A. D., Norcott, J. P. , and Cutler, D. F. (1998) J. Biol. Chem. 273, 2729-2737). In the current study, we examined lysosomal targeting by both subcellular fractionation and an intracellular proteolysis assay and found that a balance of positive and negative signals is required for proper lysosomal sorting of P-selectin. First, we have found that within the sequence KCPL, Cys-766 plays a major role along with Pro-767, whereas Lys-765 and Leu-768 make no contribution to promoting lysosomal targeting. In addition, horseradish peroxidase-P-selectin chimeras were capable of acylation in vivo with [3H]palmitic acid at Cys-766, since no labeling of a chimera in which Cys-766 was replaced with Ala was detected. Second, analysis of mutations within the C2 domain revealed that substitution of two sequences, YGVF and DPSP, causes an increase in both lysosomal targeting and intracellular proteolysis suggesting the presence of lysosomal avoidance signals. The inhibition or promotion of lysosomal targeting resulted from alterations in endosomal sorting since internalization was not changed in parallel with lysosomal delivery. Analysis of the double mutants KCPL/YGVF or KCPL/DPSP revealed that although the positive lysosomal targeting signal operates in the early/sorting transferrin-positive endosomes, the negative lysosomal targeting (lysosomal avoidance) signals act at later stages of the endocytic pathway, most likely in late endosomal compartments.  相似文献   

8.
Inside APCs, MHC class II molecules associate with antigenic peptides before reaching the cell surface. This association takes place in compartments of the endocytic pathway, more related to endosomes or lysosomes depending on the cell type. Here, we compared MHC class II transport from endosomal vs lysosomal compartments to the plasma membrane. We show that transport of MHC class II molecules to the cell surface does not depend on the cytosolic domains of the alpha- and beta-chains. In contrast, the stability of the alphabeta-peptide complexes determined the efficiency of transport to the cell surface from lysosomal, but not from endosomal, compartments. In murine B lymphoma cells, SDS-unstable and -stable complexes were transported to the cell surface at almost similar rates, whereas after lysosomal relocalization or in a cell line in which MHC class II molecules normally accumulate in lysosomal compartments, stable complexes were preferentially addressed to the cell surface. Our results suggest that when peptide loading occurs in lysosomal compartments, selective retention and lysosomal degradation of unstable dimers result in the expression of highly stable MHC class II-peptide complexes at the APC surface.  相似文献   

9.
Receptor-mediated endocytosis of circulating collagen is a major physiological scavenger function of the liver endothelial cell and an important catabolic event in the complete turnover of this abundant connective tissue protein. In the present study, transport of collagen through the endocytic pathway was investigated in cultured liver endothelial cells. Collagen conjugated to fluorescein isothiocyanate, to allow detection of the ligand by fluorescence and immunoelectron microscopy, was found sequentially in three different organelles that compose the basic degradative endocytic pathway of eukaryotic cells: early endosomes, late endosomes, and terminal lysosomes. Early endosomes were identified as vesicles positive for early endosome antigen 1 (EEA1). Late endosomes were distinguished as structures positive for the late endosomal/lysosomal marker rat lysosomal membrane glycoprotein 120, but negative for EEA1 and lysosomally targeted BSA-gold. Lysosomes were defined by their content of BSA-gold, injected 24 hours before isolation of cells. Coated pits and coated vesicles mediated an extremely rapid internalization. Shortly after internalization and during the first 20 minutes, ligand was found in early endosomes. From 20 minutes on, ligand started to appear in late endosomes (23%), and by 2 hours the transfer was largely complete (82.5%). Only 2.5% of ligand was transferred to the lysosomes after 2 hours, and this number slowly increased to 21% and 53% after 6 and 16 hours, respectively. We conclude that 1) EEA1 is a useful marker for tracing early events of endocytosis in liver endothelial cells; 2) in contrast to the rapid internalization, transit of internalized ligand through early sorting endosomes generally takes from 20 minutes to 2 hours; and 3) exit from the late endosomes is very slow, requiring several hours.  相似文献   

10.
Binding of antigenic peptides to MHC class II (MHC-II) molecules occurs in the endocytic pathway. From previous studies in B lymphocytes, it is believed that most but not all of the newly synthesized MHC-II molecules are directly targeted from the trans-Golgi network to endosomal compartments. By using pulse-chase metabolic labeling followed by cell surface biotinylation, we show here that in contrast to an EBV-transformed B cell line and human monocytes, the majority of newly synthesized MHC-II molecules (at least 55 +/- 13%) are first routed to the plasma membrane of dendritic cells derived from human monocytes. They reach the cell surface in association with the invariant chain (Ii), a polypeptide known to target MHC-II to the endosomal/lysosomal system. Following rapid internalization and degradation of Ii, these alphabeta Ii complexes are converted into alphabeta-peptide complexes as shown by their SDS stability. These SDS-stable dimers appear as soon as 15 to 30 min after internalization of the alphabeta Ii complexes. More than 80% of alphabeta dimers originating from internalized alphabeta Ii complexes are progressively delivered to the cell surface within the next 2 h. Depolymerization of microtubules, which delays the transport to late endosomal compartments, did not affect the kinetics of conversion of surface alphbeta Ii into SDS-stable and -unstable alphabeta dimers. Altogether, these data suggest that newly liberated class II alphabeta heterodimers may bind peptides in different compartments along the endocytic pathway in dendritic cells derived from human monocytes.  相似文献   

11.
The trafficking of GLUT4, a facilitative glucose transporter, is examined in transfected CHO cells. In previous work, we expressed GLUT4 in neuroendocrine cells and fibroblasts and found that it was targeted to a population of small vesicles slightly larger than synaptic vesicles (Herman, G.A, F. Bonzelius, A.M. Cieutat, and R.B. Kelly. 1994. Proc. Natl. Acad. Sci. USA. 91: 12750-12754.). In this study, we demonstrate that at 37 degrees C, GLUT4-containing small vesicles (GSVs) are detected after cell surface radiolabeling of GLUT4 whereas uptake of radioiodinated human transferrin does not show appreciable accumulation within these small vesicles. Immunofluorescence microscopy experiments show that at 37 degrees C, cell surface-labeled GLUT4 as well as transferrin is internalized into peripheral and perinuclear structures. At 15 degrees C, endocytosis of GLUT4 continues to occur at a slowed rate, but whereas fluorescently labeled GLUT4 is seen to accumulate within large peripheral endosomes, no perinuclear structures are labeled, and no radiolabeled GSVs are detectable. Shifting cells to 37 degrees C after accumulating labeled GLUT4 at 15 degrees C results in the reappearance of GLUT4 in perinuclear structures and GSV reformation. Cytosol acidification or treatment with hypertonic media containing sucrose prevents the exit of GLUT4 from peripheral endosomes as well as GSV formation, suggesting that coat proteins may be involved in the endocytic trafficking of GLUT4. In contrast, at 15 degrees C, transferrin continues to traffic to perinuclear structures and overall labels structures similar in distribution to those observed at 37 degrees C. Furthermore, treatment with hypertonic media has no apparent effect on transferrin trafficking from peripheral endosomes. Double-labeling experiments after the internalization of both transferrin and surface-labeled GLUT4 show that GLUT4 accumulates within peripheral compartments that exclude the transferrin receptor (TfR) at both 15 degrees and 37 degrees C. Thus, GLUT4 is sorted differently from the transferrin receptor as evidenced by the targeting of each protein to distinct early endosomal compartments and by the formation of GSVs. These results suggest that the sorting of GLUT4 from TfR may occur primarily at the level of the plasma membrane into distinct endosomes and that the organization of the endocytic system in CHO cells more closely resembles that of neuroendocrine cells than previously appreciated.  相似文献   

12.
The molecular mechanisms that regulate sorting of major histocompatibility complex (MHC) class II molecules into the endocytic pathway are poorly understood. For many proteins, access to endosomal compartments is regulated by cytosolically expressed sequences. We present evidence that a sequence in the lumenal domain of the MHC class II molecule regulates a very late event in class II biogenesis. Class II molecules containing single amino acid changes in the highly conserved 80-82 region of the beta chain were introduced into invariant chain (Ii)-negative fibroblasts with wild-type alpha chain, and the derived transfectants were analyzed biochemically. Using an endosomal isolation technique, we have quantified the level of class II molecules expressed in endocytic compartments and found that in the absence of Ii, approximately 15% of total cellular class II molecules can be isolated from endosomal compartments. Mutation at position 80 enhances this localization, while changes at positions 81 and 82 ablate class II expression in endosomal compartments. In addition, we have evaluated whether the induced changes in intracellular distribution of class II molecules were due to alterations in early biosynthetic events, indicative of misfolding of the molecules, or to modulation of later trafficking events more likely to be a consequence of the modulation of a specific transport event. Despite the dramatic effects on endosomal localization induced by the mutations, early biosynthetic events and maturation of class II were unaffected by the mutations. Collectively, our data argue that late trafficking events that control the ability of the class II molecule to access antigens is regulated by the 80-82 segment of the MHC class II beta chains.  相似文献   

13.
Free-flow electrophoresis (FFE) was used to investigate the intracellular compartments involved in fluid-phase marker, fluoresceine isothiocyanate (FITC)-dextran, transport in the isolated perfused rat liver. One to 2 min after uptake at 37 degrees C, FITC-dextran was found in endosomes with the same electrophoretic mobility as early sorting endosomes labeled either by the hepatocyte-specific marker asialoorosomucoid (ASOR) or by transferrin that enters all liver cells. Labeling at low temperature (16 degrees C) blocked transport of ASOR and dextran in early endosomes. With increasing internalization time (3-13 min) at 37 degrees C, FITC-dextran-labeled compartments co-localized with late, ASOR-containing endosomes. Since localization of FITC-dextran in late transcytotic compartments was not observed upon FFE separation, it is concluded that the majority of internalized markers is directed to lysosomes. The FITC-label did not account for the predominant lysosomal targeting of the dextran, since [3H]dextran-labeled endosomes exhibited an identical FFE pattern. Taken together, these data indicate that the fluid-phase marker dextran is transported through intracellular compartments with identical characteristics as endosome subcompartments of the receptor-mediated lysosomal route.  相似文献   

14.
The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the mechanisms involved in the sorting events following PKC-induced internalization are not known. In this study, we demonstrated that following PKC-induced internalization, the TCR is recycled back to the cell surface in a functional state. TCR recycling was dependent on dephosphorylation of CD3gamma, probably mediated by the serine/threonine protein phosphatase-2A, but independent on microtubules or actin polymerization. Furthermore, in contrast to ligand-mediated TCR sorting, recycling of the TCR was independent of the tyrosine phosphatase CD45 and the Src tyrosine kinases p56(Lck) and p59(Fyn). Studies of mutated TCR and chimeric CD4-CD3gamma molecules demonstrated that CD3gamma did not contain a recycling signal in itself. In contrast, the only sorting information in CD3gamma was the Leu-based motif that mediated lysosomal sorting of chimeric CD4-CD3gamma molecules. Finally, we found a correlation between the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed.  相似文献   

15.
The major yolk protein precursor in mosquito oocytes, vitellogenin (Vg), is internalized by a 205-kDa membrane-bound receptor (VgR). Recently, VgR has been isolated permitting the production of polyclonal anti-VgR antibodies. To elucidate the pathway of VgR internalization and recycling in mosquito oocytes during Vg uptake, we carried out an immunogold electron-microscopic study, labeling both Vg and VgR in ultrathin frozen sections of ovarian tissue. VgR immunolabeling demonstrated that the oocyte plasma membrane was subdivided into microdomains, with VgR being located between and at the lower portions of the oocyte microvilli. During the early stages of internalization, Vg and VgR were observed together in coated pits, coated vesicles, and early endosomes. Fusion of early endosomes created transitional yolk bodies (TYB) in which Vg and VgR became segregated. VgR label was present in the numerous tubular compartments that protruded from the TYBs. These tubular organelles extended to and fused with the plasma membrane, suggesting that they represented the vehicle for VgR recycling. Vg label was not observed in the tubular compartments. Instead, Vg accumulated in the core of the TYB, a region free of VgR label. Mature yolk bodies (MYB) were heavily labeled for Vg, but completely lacked any VgR label, indicating that MYB are storage compartments that do not participate in receptor recycling. Thus, our immunocytochemical data clearly visualize the steps in Vg/VgR internalization, dissociation, sorting, and recycling of the receptor to the plasma membrane.  相似文献   

16.
The targeting of the insulin-responsive glucose transporter, GLUT-4, to an intracellular compartment in adipocytes and muscle is one of the key features responsible for the unique insulin sensitivity of this transporter. Through expression of epitope-tagged GLUT-4 mutants in 3T3-L1 adipocytes, two motifs have been identified as playing a central role in GLUT-4 targeting: FQQI in the amino terminus and a di-leucine motif in the carboxy terminus. The goal of this study was to explore the role of these targeting motifs in the intracellular sorting of GLUT-4 using the Tf-HRP ablation technique. This technique provides a quantitative assessment of the amount of GLUT-4 located in recycling endosomes. In basal adipocytes, we find that approximately 40% of GLUT-4 is ablated following Tf-HRP loading. In contrast, here we demonstrate that the intracellular pool of a mutant in which F5 was mutated to A5 is localized to the recycling endosomal pathway, suggesting that the amino terminal FQQI motif functions in trafficking GLUT-4 from early endosomes. In contrast, GLUT-4 in which L489L490 was mutated to A489A490 was localized predominantly to a nonablated compartment. These data imply a role for the di-leucine motif in sorting from a separate intracellular compartment, such as the TGN. Our findings are discussed within the context of a revised multicompartment model for GLUT-4 trafficking in adipocytes, in which mutations in either the FQQI or LL motifs result in the altered subcellular trafficking of GLUT-4 between multiple intracellular compartments.  相似文献   

17.
Several actin-binding proteins participate in the morphological changes that occur during amoeboid movement. The gene encoding one of these proteins, the gelation factor ABP-120, was identified and characterized from trophozoites of Entamoeba histolytica. The sequence contains 2574 nucleotides, with an open reading frame of 858 amino acids, giving a protein of 93 kDa belonging to the spectrin family. The N-terminal domain of ABP-120 from E. histolytica revealed a consensus site for actin binding homologous to the actin-binding sites of ABP-120 of Dictyostelium discoideum, alpha-actinin and spectrin. Analysis of the central domain revealed the presence of four repeats of a 73-amino-acid motif constituting 31% of the protein. In addition, a stretch of 105 amino acids was highly divergent when compared with the C-terminal domain of D. discoideum ABP-120. This sequence showed short motifs that are homologous to microtubule-binding domains. We found that ABP-120 from E. histolytica binds to F-actin. In addition, upon motility of the parasite, this protein localized in the pseudopod and the uroid region, implying a role for ABP-120 in movement and capping of surface receptors in E. histolytica.  相似文献   

18.
Transport of yeast alkaline phosphatase (ALP) to the vacuole depends on the clathrin adaptor-like complex AP-3, but does not depend on proteins necessary for transport through pre-vacuolar endosomes. We have identified ALP sequences that direct sorting into the AP-3-dependent pathway using chimeric proteins containing residues from the ALP cytoplasmic domain fused to sequences from a Golgi-localized membrane protein, guanosine diphosphatase (GDPase). The full-length ALP cytoplasmic domain, or ALP amino acids 1-16 separated from the transmembrane domain by a spacer, directed GDPase chimeric proteins from the Golgi complex to the vacuole via the AP-3 pathway. Mutation of residues Leu13 and Val14 within the ALP cytoplasmic domain prevented AP-3-dependent vacuolar transport of both chimeric proteins and full-length ALP. This Leucine-Valine (LV)-based sorting signal targeted chimeric proteins and native ALP to the vacuole in cells lacking clathrin function. These results identify an LV-based sorting signal in the ALP cytoplasmic domain that directs transport into a clathrin-independent, AP-3-dependent pathway to the vacuole. The similarity of the ALP sorting signal to mammalian dileucine sorting motifs, and the evolutionary conservation of AP-3 subunits, suggests that dileucine-like signals constitute a core element for AP-3-dependent transport to lysosomal compartments in all eukaryotic cells.  相似文献   

19.
Transport of newly synthesized MHC class II glycoproteins to endosomal Ag processing compartments is mediated by their association with the invariant chain (Ii). Targeting to these compartments is dependent upon recognition of leucine-based endo. somal/lysosomal targeting motifs in the Ii cytosolic domain. Ii, like many molecules that contain leucine-based endosomal targeting motifs, is phosphorylated in vivo. In this report we demonstrate that the cytosolic domain of the p35 Ii isoform is phosphorylated in class II Ii complexes isolated from human B lymphoblastoid cell lines or freshly obtained PBMC. Mutation of serine residue 6 or 8 prevents phosphorylation of Ii-p35 expressed in HeLa cells. Treatment of B lymphoblastoid cell lines with the serine/threonine kinase inhibitor staurosporine prevented Ii phosphorylation and significantly delayed trafficking of newly synthesized class II Ii complexes to endosomal Ag processing compartments. By contrast, staurosporine had no effect on the rate of transport of class I or class II glycoproteins through the Golgi apparatus and did not inhibit the delivery of the chimeric molecule Tac-DM, to endocytic compartments, suggesting that staurosporine does not nonspecifically inhibit protein transport to the endocytic pathway. These results demonstrate that phosphorylation regulates the efficient targeting of MHC class II Ii complexes to Ag processing compartments and strongly suggest that this effect is mediated by phosphorylation of the MHC class II-associated Ii chain.  相似文献   

20.
A large number of trafficking steps occur between the last compartment of the Golgi apparatus (TGN) and the vacuole of the yeast Saccharomyces cerevisiae. To date, two intracellular routes from the TGN to the vacuole have been identified. Carboxypeptidase Y (CPY) travels through a prevacuolar/endosomal compartment (PVC), and subsequently on to the vacuole, while alkaline phosphatase (ALP) bypasses this compartment to reach the same organelle. Proteins resident to the TGN achieve their localization despite a continuous flux of traffic by continually being retrieved from the distal PVC by virtue of an aromatic amino acid-containing sorting motif. In this study we report that a hybrid protein based on ALP and containing this retrieval motif reaches the PVC not by following the CPY sorting pathway, but instead by signal-dependent retrograde transport from the vacuole, an organelle previously thought of as a terminal compartment. In addition, we show that a mutation in VAC7, a gene previously identified as being required for vacuolar inheritance, blocks this trafficking step. Finally we show that Vti1p, a v-SNARE required for the delivery of both CPY and ALP to the vacuole, uses retrograde transport out of the vacuole as part of its normal cellular itinerary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号