首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
This paper deals with a procedure to generate maps of the integrated precipitable water vapor (IPWV) over the Mediterranean area by using estimates from a global positioning system (GPS) network over land and from the Special Sensor Microwave/Imager (SSM/I) over sea. In particular, we investigate the application of the kriging geostatistical technique to obtain regularly spaced IPWV values. The horizontal spatial structure of water vapor retrieved by SSM/I is explored by computing variograms that provide a measure of dissimilarity between pairs of IPWV values for the region of interest. Because the water vapor density decreases with height, the GPS station elevation is accounted for in the interpolation procedure. In this respect, the potential of the kriging with external drift relative to the ordinary kriging is evaluated by applying a test based on the cross-validation approach. Case studies are presented and qualitatively compared to the corresponding Meteosat infrared images. A quantitative comparison with an independent source of information, such as IPWV computed from radiosonde observations and from European Centre for Medium-Range Weather Forecasts analysis, is also performed.  相似文献   

2.
A large dataset of concurrent integrated precipitable water vapor (IPWV) estimates from ground-based microwave radiometers (MWRs), global positioning system (GPS) ground-receivers, and radiosonde observations (RAOBs) has been collected in five different sites in Central Italy. Both MWRs and GPS have shown a capability of accurate and continuous water vapor monitoring. These data are used to study the seasonal and spatial variability of IPWV. A comparison of these data with the IPWV field produced operationally by the nonhydrostatic Mesoscale Model (MM5), running at the University of L'Aquila/Center of Excellence (CETEMPS) is performed in order to find either model shortcomings and to corroborate the IPWV behavior highlighted by the measurements. Both measurements and model outputs span over a period of about one year allowing for a systematic statistical analysis for all the examined stations. The statistical analysis shows a good agreement between GPS and MWR data, whereas discrepancies are found between RAOBs and the other techniques. The IPWV shows the largest diurnal variability, approximately 3%, during the summer season. An overall good agreement is found between the forecasted and observed IPWV. The related statistical parameters show a very low bias (0.001 cm) with a good correlation coefficient (0.939). On the other hands, the seasonal analyses highlight a few discrepancies, mostly due to the MM5 difficulties in correctly forecasting the diurnal cycle.  相似文献   

3.
Millimeter-wave radiometric measurements obtained from the NASA ER-2 aircraft over the arctic region on May 20, 1998, were used to estimate precipitable water (PW) in the range⩽0.60 g/cm2. The approach is a modified version of the recent work by J. Miao (1998), which utilized the radiometric measurements at 150, 183.3±3, and 183.3±7 GHz of the SSM/T-2 sensor to retrieve PW over the antarctic region. However, Miao has implicitly assumed a surface emissivity that is frequency independent over the 150-183 GHz range. This assumption turns out not to be a good one based on the airborne measurements described below and the errors introduced in the PW estimation were substantial in many cases. It is shown below that four-frequency radiometric measurements in the frequency range of 150-220 GHz provided a robust retrieval of PW, while allowing for a surface emissivity that varied linearly with frequency. The retrieved PW compared favorably with that calculated from rawinsonde data at two widely separated locations. The differences between the retrieved and calculated values are not more than ±0.02 g/cm2, which is smaller than errors associated with measurement uncertainty. It is found necessary to account for the double side-band nature of the 183.3 GHz measurements in the radiative transfer calculations for development of the retrieval algorithm. The PW values estimated from the algorithm developed from single side band, 183.3 GHz radiative transfer calculations could be in error by as much as ±0.10 g/cm2 . Finally, the effect of surface temperature variations is shown to introduce only a small error in the estimation of PW  相似文献   

4.
We show that observed biases in retrievals of temperature and water vapor profiles from a 12-channel microwave radiometer arise from systematic differences between the observed and model-calculated brightness temperatures at five measurement frequencies between 22 and 30 GHz. Replacing the value for the air-broadened half-width of the 22-GHz water vapor line used in the Rosenkranz absorption model with the 5% smaller half-width from the HITRAN compilation largely eliminated the systematic differences in brightness temperatures. An a priori statistical retrieval based on the revised model demonstrated significant improvements in the accuracy and vertical resolution of the retrieved temperature and water vapor profiles. Additional improvements were demonstrated by combining the MWRP retrievals with those from the GOES-8 sounder and by incorporating brightness temperature measurements at off-zenith angles in the retrievals.  相似文献   

5.
The measurements from satellite microwave imaging and sounding channels are simultaneously utilized through a one-dimensional (1-D) variation method (1D-var) to retrieve the profiles of atmospheric temperature, water vapor and cloud water. Since the radiative transfer model in this 1D-var procedure includes scattering and emission from the earth's atmosphere, the retrieval can perform well under all weather conditions. The iterative procedure is optimized to minimize computational demands and to achieve better accuracy. At first, the profiles of temperature, water vapor, and cloud liquid water are derived using only the AMSU-A measurements at frequencies less than 60 GHz. The second step is to retrieve rain and ice water using the AMSU-B measurements at 89 and 150 GHz. Finally, all AMSU-A/B sounding channels at 50-60 and 183 GHz are utilized to further refine the profiles of temperature and water vapor while the profiles of cloud, rain, and ice water contents are constrained to those previously derived. It is shown that the radiative transfer model including multiple scattering from clouds and precipitation can significantly improve the accuracy for retrieving temperature, moisture and cloud water. In hurricane conditions, an emission-based radiative transfer model tends to produce unrealistic temperature anomalies throughout the atmosphere. With a scattering-based radiative transfer model, the derived temperature profiles agree well with those observed from aircraft dropsondes.  相似文献   

6.
Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison Experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous "tipcal" method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K rms difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed a bias difference of less than 0.69 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval.  相似文献   

7.
It is demonstrated that an irregularity in a microwave array can be diagnosed optically from its microwave hologram with the aid of a complex spatial filter which stores the elemental far-field pattern. This process yields information about the original object which may not be readily apparent in the direct optical image and far-field pattern.  相似文献   

8.
A compensation method is presented for the suppression of the discharge-modulation noise in a gas laser beam. The method uses an external KDP cell and is effective for a limited frequency band.  相似文献   

9.
An axial relativistic electron beam passing through a slow wave structure is unstable to an electromagnetic perturbation whose phase velocity equals the velocity of the beam. This phenomenon of Cherenkov emission is the basis of all traveling wave tubes. In this paper an excitation of Cherenkov radiation by a thin annular relativistic electron beam in a plasma-filled dielectric-lined waveguide is analysed by use of the self-consistent linear theory. The effect of the thin annular electron beam on the beam-wave interaction is completely described by a jump condition. The dispersion equation and the simultaneous condition of the beam-wave interaction are derived. Finally, the growth rate of the wave is obtained, and the effect of the background plasma density and the electron beam radius on the growth rate of the wave are presented.  相似文献   

10.
11.
A resistance network analogue is used to solve the Laplace equation in an infinite plane. The network permits various direct measurements, such as the capacity per unit length and the wave impedance of a stripline. The results obtained by this and other methods are compared.  相似文献   

12.
Enning  B. 《Electronics letters》1981,17(15):548-549
In the letter a circuit is presented which can be used for retiming and demultiplexing in Gbit/s applications. Taking advantage of the three-port properties of a field-effect transistor only one transistor is needed.  相似文献   

13.
Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.  相似文献   

14.
The device under investigation is a microwave Ga As field-effect transistor. It is intended for use on board a telecommunications satellite. The various parts involved are space qualified transistors, which have gone through various qualification tests at the manufacturer's.Statistical data analysis methods were used to process the results of measurements: main components analysis, automatic classification. The study of the burn-in behaviour was derived from qualification measurements. Additional tests were carried out on ten qualified devices. The results of these tests are also presented in this paper.  相似文献   

15.
Perpendicularly arrayed and size‐controlled nanocylinders have been prepared by simply blending an asymmetric polystyrene‐block‐polyisoprene‐block‐polystyrene triblock copolymer with polystyrene (the minority component) homopolymers of different molecular weights. The preference for perpendicular orientation or hexagonal ordering of the nanocylinders over a large area in the asymmetric block copolymer can be controlled by adjusting the molecular weight of the blended homopolymer, and the perfection of hexagonal ordering of the perpendicular cylinders can be tuned by using a substrate whose surface tension is much different from that of the majority component of the block copolymer. Such highly controlled nanostructured block‐copolymer materials, which have been obtained by a simple method independent of film thickness and interfacial tension between the blocks and the substrates, have wide‐ranging commercial potential, e.g., for use in membranes and nanotemplates with size‐tunable pores, bandgap‐controlled photonic crystals, and other nanotechnological fields demanding a specific nanosize and nanomorphology.  相似文献   

16.
The dependence of the anticarcinogenic and antiblastic effect of retinoid on the regime of its inoculation and on the process stage has been established using the 7,12 dimethylbenz(a)anthracene-induced mammary carcinogenesis of rats. The prophylactic administration of retinoid alone and its therapeutic inoculation against a background of hormonal correction resulted in the most expressed effect that was estimated by the elongation of the latent period, incidence and growth rate of tumours, lifespan of treated animals as well as by the distribution of malignant and benign tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号