首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
通过筛选复配,组成了以三聚氰胺氰尿酸盐(MCA)为气源、聚磷酸铵(APP)为酸源的化学膨胀复配阻燃体系,用于对(乙烯/乙酸乙烯酯)共聚物(E/VAC)进行阻燃改性。通过极限氧指数(LOI)测试、垂直燃烧实验研究了MCA/APP协同阻燃作用对E/VAC燃烧性能的影响;并运用光学显微镜(OL)、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)等分析手段对阻燃E/VAC体系燃烧后的结构进行了分析。结果表明,随着APP在MCA/APP体系中比例的增加,阻燃E/VAC的LOI由25.2%提高到28.3%;当MCA/APP配比为1.8∶1时,阻燃E/VAC的燃烧等级可以达到FV-0级;燃烧试样膨胀层的OL分析表明,随着MCA在MCA/APP体系中比例的增加,其膨胀层横截面处的孔洞增多、孔径变大,证明燃烧时形成了良好的膨胀和隔热层;燃烧试样炭层的OL和SEM分析表明,随着APP在MCA/APP体系中比例的增加,燃烧试样形成了具有良好阻燃效果的多孔泡沫状炭层;FTIR分析表明,阻燃E/VAC试样燃烧时发生脱水炭化现象。  相似文献   

2.
以聚磷酸铵/膨胀石墨(APP/EG)为阻燃剂,制备了高阻燃的聚异氰酸酯-聚氨酯(PIR-PU)泡沫材料。采用极限氧指数(LOI)测试、红外光谱分析(IR)、热重分析(TGA)等方法对所制备PIR-PU泡沫材料的燃烧及热降解行为进行了研究。结果表明:APP与EG存在着良好的协同阻燃作用,APP/EG的添加可有效提高PIR-PU泡沫材料的LOI值,其中当APP/EG用量为25份、其配比为3/7时,PIR-PU泡沫材料具有最佳阻燃性能,材料的LOI值可达35.4%。APP与EG的复配使用,使PIR-PU泡沫材料的炭层较单独使用APP或EG时更为致密,有效提高了材料的热分解温度,降低了热降解速率,进而改善了材料的阻燃性能。  相似文献   

3.
膨胀型无卤阻燃聚乙烯材料的研究   总被引:21,自引:0,他引:21  
采用膨胀型阻燃剂-聚磷酸铵和季戊四醇(APP/PER)体系对低密度聚乙烯(LDPE)进行阻燃.通过热重分析(TGA)方法研究了成炭促进剂Zeolite(ZEO)对APP/PER和LDPE的催化成炭作用以及影响LDPE/APP/PER材料阻燃性能的各种因素,同时还对APP与PER之间的膨胀成炭反应历程进行了初步探讨.利用混料试验设计方法对LDPE/APP/PER/AEO材料的配方进行了优化设计,得到了使材料阻燃性能达到最好时的APP/PER/ZEO之间的最佳配比.实验结果表明,将APP、PER、与ZEO联用有较好的阻燃协效作用,添加APP/PER/ZEO膨胀型阻燃剂体系可使阻燃聚乙烯材料的氧指数达到29.3.  相似文献   

4.
《塑料》2018,(6)
将精制后的碱木质素代替部分聚醚多元醇,通过一步发泡法与聚合MDI混合制备了碱木质素聚氨酯泡沫,同时采用季戊四醇(PER)和聚磷酸铵(APP)复配组成膨胀阻燃剂(IFR)制备了碱木质素阻燃聚氨酯泡沫,通过极限氧指数(LOI)测试分析了碱木质素阻燃聚氨酯泡沫的阻燃性能。通过热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分别研究了所制试样的热降解行为和成炭性能、燃烧行为和残炭的形貌。分析结果表明:当碱木质素的添加量为聚醚多元醇的5%,APP与PER的质量比为3∶1,IFR的添加量为30%时,碱木质素基聚氨酯泡沫的LOI达到了24.8%,IFR的加入促进了碱木质素聚氨酯泡沫的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

5.
采用一步发泡法制备出聚氨酯泡沫(PUF),将精制碱木质素与聚磷酸铵(APP)按不同比例组成膨胀阻燃剂(IFR)并添加到PUF中,制得碱木质素/聚磷酸铵膨胀阻燃聚氨酯泡沫(PUF/IFR)。通过极限氧指数(LOI)测试、热重分析(TG)、扫描电镜(SEM)考察了PUF/IFR材料的阻燃性能、热降解行为、成炭性能及残炭微观形貌。结果表明:当碱木质素与APP的复配比为1:6、IFR添加量为30%时,PUF/IFR的LOI值达到26.3%。IFR的加入形成了连续致密的炭层附着在材料表面,降低了材料的热降解速率,提高了残炭率,从而改善了材料的热稳定性和阻燃性能。  相似文献   

6.
李旭  许苗军  李斌 《塑料》2016,(4):39-42,72
将实验室自制的三嗪大分子成炭发泡剂(CFA)、聚磷酸铵(APP)及硅树脂复配成膨胀阻燃剂(IFR)添加到聚乳酸(PLA)材料中制备阻燃PLA(IFR-PLA)材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能。通过热重分析(TGA)测试研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行研究。结果表明:当APP与CFA的质量比为5∶1,IFR的添加量为15%时,IFR-PLA材料通过UL-94 V-0级,LOI值达33.5%。IFR的加入促进了PLA材料的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

7.
《塑料》2015,(4)
将聚磷酸铵(APP)与可膨胀石墨(EG)进行复配后添加到环氧树脂(EP)中,以间苯二胺(PDA)为固化剂,制备阻燃环氧树脂固化物,通过极限氧指数(LOI)、垂直燃烧(UL-94)和热重分析(TGA)测试研究了材料的阻燃性能、热降解行为,通过锥形量热(CONE)测试研究了材料的燃烧行为,通过扫描电镜(SEM)研究了材料炭层的形貌,同时还研究了APP与EG的不同配比对EP材料阻燃性能的影响。结果表明:当APP与EG的质量比为3∶2、添加量为5%时,阻燃EP材料通过了UL-94 V-0级,LOI值达到了29.0%。TGA测试结果表明:阻燃剂APP及EG的加入明显地改变了材料的热降解行为,促进了环氧树脂材料的提前降解和成炭,降低了材料的热降解速率,材料在700℃时的残炭量由14.6%提高到了29.9%。CONE测试结果表明:阻燃剂的加入明显降低了材料的热释放速率(HRR)和总热释放量(THR)。SEM测试结果表明:阻燃材料燃烧后形成了致密均一的炭层,能很好地阻止氧气和热量进入到材料的内部,同时减少可燃气体的逸出,从而抑制了基体树脂的进一步降解和燃烧,提高了材料的阻燃性能。  相似文献   

8.
将三聚氰胺氰尿酸盐(MCA)、聚磷酸铵(APP)与聚丙烯(PP)共混,制备了无卤阻燃PP复合材料,采用极限氧指数仪、热失重分析仪、扫描电子显微镜、电子万能试验机等对材料的阻燃性能、热性能和力学性能等进行了表征,研究了APP/MCA的协效阻燃作用及其对材料力学性能的影响规律。结果表明,在材料中添加25份APP/MCA时,材料的极限氧指数随MCA含量的增加先升高后下降,当MCA含量为30 %(质量分数,下同)时,材料的极限氧指数达到最大值24.2 %;材料的力学性能同样随MCA含量的增加而先升高后下降,当MCA含量为30 %时,其拉伸强度比APP单独阻燃PP时提高了50 %,断裂强度和屈服强度均提高10 %以上。  相似文献   

9.
APP/Sb2O3复合阻燃剂对聚乙烯性能的影响   总被引:1,自引:0,他引:1  
以低密度聚乙烯(LDPE)和线性低密度聚乙烯(LLDPE)二元共混体系为基础树脂,膨胀型阻燃剂聚磷酸铵(APP)与三氧化二锑(Sb2O3)组成无卤膨胀型阻燃体系,研究APP/Sb2O3复合阻燃剂对复合阻燃体系阻燃性能的影响.结果表明,LDPE/LLDPE为100份,复合阻燃体系中APP/Sb2O3阻燃剂总添加量不低于40份时可达到FV-0阻燃级别;复合阻燃体系的力学性能、流动性能和加工性能均随阻燃剂含量的增加而变差.  相似文献   

10.
为了提高苯乙烯一丁二烯一丙烯睛(ABS)/聚磷酸铵(APP)/聚对苯二甲酞乙二胺(PETA)膨胀阻燃体系的阻燃性能,将硼酸锌(ZB)、红磷(RP)添加到ABS/ APP/ PETA膨胀阻燃体系中。采用极限氧指数法、垂直燃烧法、热失重、扫描电镜探讨了不同含量协效剂ZB,RP对不同比例ABS/APP/PETA阻燃体系的协效阻燃效应。结果表明,加人协效剂使ABS/APP/PETA体系的阻燃性能得到显著提高;将2.5份(质量份,下同)ZB和4份RP加人到ABS/APP/PETA( 70/22. 5/7. 5)体系,体系的极限氧指数由未加协效剂的30%提高到41%,UL-94测试也达到V-0级;ZB提高了ABS/APP/PETA体系热稳定性和成炭率,RP能极大地促进成炭;加人ZB和RP ,阻燃体系燃烧表面能够形成更多膨胀、致密的炭层。  相似文献   

11.
钟卫平  苟凯  栾国俊  叶立军 《塑料工业》2012,40(12):102-104,115
将不同醋酸乙烯(VA)含量的乙烯-醋酸乙烯共聚物(EVA)与聚磷酸铵(APP)、三聚氰胺氰尿酸盐(MCA)复配成膨胀型阻燃剂,探讨了不同VA含量、不同比例的EVA树脂对丙烯腈-丁二烯-苯乙烯共聚物(ABS)的阻燃性、悬臂梁缺口冲击强度、热变形温度的影响。结果表明,在ABS树脂中添加膨胀型阻燃剂EVA/APP/MCA,可显著提高其阻燃性能;随EVA含量增加,EVA/APP/MCA无卤阻燃ABS体系的阻燃性能和悬臂梁缺口冲击强度增加,热变形温度下降;随VA含量的增加,EVA/APP/MCA无卤阻燃ABS体系的阻燃性能和热变形温度增加,悬臂梁缺口冲击强度下降。  相似文献   

12.
张翔  张帆 《中国塑料》2012,(4):92-96
采用自制干法合成的磷-氮膨胀型阻燃剂(磷酸酯三聚氰胺盐,IFR)复配聚磷酸胺(APP)和聚四氟乙烯(PT-FE)阻燃改性聚丙烯(PP),利用极限氧指数法、垂直燃烧法分析了阻燃PP的燃烧性能,通过热重分析仪、傅里叶变换红外光谱仪、扫描电子显微镜和X射线光电子能谱对阻燃PP的热降解过程、燃烧性能、残炭结构进行了分析,并研究了燃烧过程中复配阻燃体系对PP的阻燃机理。结果发现,IFR、APP和PTFE之间具有明显的阻燃协效作用;当阻燃剂总添加量为24%(APP为6%、IFR为17.5%、PTFE为0.5%)(质量分数)时,阻燃PP的极限氧指数达到30.1%,垂直燃烧测试达UL 94V-0级;加入阻燃剂还能提高PP的热稳定性。  相似文献   

13.
将次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MCA)复配后添加到热塑性聚氨酯(TPU)中制备阻燃TPU材料,通过氧指数(OI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过热重分析(TGA)技术测定了材料的热稳定性及成炭性能,同时还研究了AHP与MCA不同的质量比对TPU材料性能的影响。结果表明:当AHP与MCA的质量比为1:2,阻燃剂的总添加量为11%时,阻燃TPU材料能通过垂直燃烧UL 94V-0级,OI达到了25.2%。TGA测试结果表明:阻燃剂AHP/MCA的加入对TPU材料的起始热分解温度没有影响,但能提高材料在高温时的热稳定性,同时提高材料的成炭性能。增加的炭层能有效地阻止氧气和热量进入到材料内部,抑制内部可燃性气体的逸出,同时AHP与MCA能释放出难燃气体,稀释氧气及可燃性气体的浓度,从而提高了材料的阻燃性能。  相似文献   

14.
微胶囊聚磷酸铵的制备及阻燃环氧树脂的性能研究   总被引:1,自引:0,他引:1  
采用三聚氰胺甲醛树脂预聚物通过原位聚合法制备了微胶囊聚磷酸铵阻燃剂(MAPP),利用扫描电镜观察到MAPP颗粒表面包覆了一层树脂。采用热重分析法、垂直燃烧法和氧指数法研究了聚磷酸铵(APP)和MAPP阻燃环氧树脂材料的热性能及阻燃性能。结果表明:与APP相比,MAPP阻燃环氧树脂的最大失质量温度、残炭量以及阻燃性能均显著提高。添加10%APP或MAPP的环氧树脂材料的氧指数均大于27.0%,阻燃性能均达到UL 94 V-0级,且MAPP样条燃烧后可形成膨胀炭层。相比于APP,MAPP阻燃材料的力学强度均有所改善,当阻燃剂填充10%时材料的拉伸强度从32.6 MPa提高到35.7 MPa,冲击强度从10.8 kJ/m2提高到11.6 kJ/m2,均高于纯环氧树脂材料的力学强度。  相似文献   

15.
为了提高膨胀型阻燃体系聚磷酸胺(APP)/尼龙6(PA6)对苯乙烯-丁二烯-丙烯腈共聚物(ABS)的阻燃效果,采用极限氧指数法、垂直燃烧法、热失重和扫描电镜分析探讨了协效剂氧化锌、4A分子筛、氧化铝和次磷酸铝对ABS/APP/PA6膨胀型阻燃复合物的协效阻燃效应.结果表明,协效剂的加入显著改善了ABS/APP/PA6体系的阻燃性能,当2%的氧化锌,4A分子筛和次磷酸铝加入时,阻燃体系的氧指数从28.3%分别提高到31.2%,30.8%和33.5%,UL94测定均为V-0级.热失重分析表明,添加剂的加入提高了阻燃体系的热稳定性和高温残炭率.SEM形貌分析显示,协效剂的加入能促进阻燃体系在燃烧后形成更加均匀、致密的炭层结构.  相似文献   

16.
《塑料科技》2017,(6):31-35
为了解决线型低密度聚乙烯(LLDPE)易燃烧的问题,利用聚磷酸铵(APP)、三嗪系成炭剂(CFA)复配成膨胀阻燃剂,乙烯-丙烯酸酯-马来酸酐(EAEM)作为弹性体加入到线型低密度聚乙烯(LLDPE)中,制备成膨胀阻燃聚乙烯材料。研究发现当膨胀阻燃剂添加量达到28%时阻燃效果最好,膨胀阻燃聚乙烯的氧指数达到31.0%,并能通过UL 94V-0级。通过对材料极限氧指数(LOI)、水平垂直燃烧(UL 94)、热失重分析(TG)、锥形量热仪(CONE)、力学性能、扫描电镜(SEM)等分析手段对膨胀阻燃线型低密度聚乙烯的阻燃机理进行了分析。  相似文献   

17.
以可膨胀石墨/甲基膦酸二甲酯体系为基础,引入3种典型的聚磷酸盐阻燃剂:聚磷酸铵(APP)、焦磷酸哌嗪(PAPP)和三聚氰胺聚磷酸盐(MPP),制备了聚磷酸盐/磷酸酯/可膨胀石墨三元阻燃硬质聚氨酯泡沫(RPUF)材料。探究了典型聚磷酸盐对阻燃硬质聚氨酯泡沫材料阻燃性能的提效作用,对燃烧性能和物理力学性能进行了分析。在3种聚磷酸盐提高极限氧指数和降低热释放作用的比较中,APP相似文献   

18.
选用聚磷酸铵(APP)与二乙基次膦酸铝(ADP)复配用于木塑复合材料(WPC)的阻燃并研究了材料的阻燃性能。结果表明,纯WPC的氧指数(LOI)值为23.5%,当单独添加19%(wt)的APP时,材料通过了垂直燃烧测试UL-94 V-0级,LOI值为28.9%。当APP与ADP以质量比为6∶1复配,阻燃剂总添加量仅为15%(wt)时,材料通过了UL-94 V-0级,LOI值达到了28.7%,表明ADP/APP体系对WPC具有很好的协同阻燃效应。力学性能测试表明,APP/ADP体系的加入对材料的力学性能影响较小。热重分析测试表明,APP/ADP体系促进了材料的初期热降解,但提高了材料的成炭性能。锥形量热测试及扫描电镜对残炭的测试表明,APP/ADP体系的加入使得材料在燃烧过程中形成了膨胀、连续的炭层,很好地抑制了材料的燃烧,使得材料的热释放速率、总热释放量显著降低。  相似文献   

19.
针对现有商品化三聚氰胺氰尿酸(MCA)团聚颗粒结构致密、硬度大、在树脂中难分散,以及其阻燃的尼龙(PA)66阻燃和力学性能劣化等问题,采用自行合成的高分散型MCA(FS–MCA)阻燃PA66,借助水基分散实验和扫描电子显微镜研究了FS–MCA颗粒形态、分散行为及分散机理,通过微型燃烧量热分析、垂直燃烧测试及拉伸和冲击性能测试研究了MCA和FS–MCA阻燃PA66材料的燃烧行为、阻燃性能及力学性能。结果表明,与现有商品化MCA相比,FS–MCA具有颗粒间结合力小,团聚颗粒结构疏松的特点,可在PA66树脂基体中实现亚微米尺度的超细化分散;当其质量分数为10%时,FS–MCA阻燃PA66材料的阻燃级别达到UL 94 V–0级(1.6 mm),且其拉伸强度、断裂伸长率和缺口冲击强度分别达到80.6 MPa,11.4%和7.9 kJ/m2,其阻燃和力学性能均明显优于现有商品化MCA阻燃PA66体系。  相似文献   

20.
研究了不同配比的聚磷酸铵(APP)/季戊四醇(PER)组成的膨胀型阻燃剂及不同阻燃剂含量对低密度聚乙烯(LDPE)阻燃性能和力学性能的影响。m(APP)/m(PER)最佳为3:2,膨胀型阻燃剂质量分数最佳为30%。与纯LDPE相比,含有最佳配比和质量分数的阻燃剂体系的复合材料的极限氧指数从17.8%提高至24.5%,550℃的残重率从30.6%提高至87.0%;力学性能有所下降,拉伸强度从10.3 MPa降为7.39 MPa,断裂伸长率从115%下降到57%。阻燃LDPE的放热量比未阻燃的LDPE减少,说明形成的膨胀炭层对内部基材起着保护作用。550℃阻燃试样的残余物中成炭较致密,在炭层中除了含C外,还含有较大量的P和少量的N。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号