首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将亚麻纤维作为增强体,与聚丙烯(PP)纤维进行混合,同时与PP长丝形成PP包覆亚麻的纱线结构,利用机织工艺织造成机织布作为复合板材的预制件,采用层合热压方法制备亚麻/PP复合材料。通过对板材弯曲性能进行测试,研究了制备工艺、纱线结构以及亚麻纤维含量(质量分数)等因素对复合材料弯曲性能的影响。研究结果表明,"三明治"铺层方法制备的板材较"混纤法"制备的板材体现出更优异的弯曲性能;与加捻纱相比,包覆纱结构板材表现出更优良的弯曲性能;以亚麻/PP包覆纱为增强体的复合材料,当亚麻纤维质量分数为46%时,其弯曲性能最优良。  相似文献   

2.
亚麻增强热塑性树脂复合材料板材的研究与应用   总被引:1,自引:1,他引:0  
以亚麻纤维为增强体,与聚丙烯(PP)纤维按一定比例进行混合,然后制备加捻纱及PP长丝包覆的包覆纱,并利用机织工艺织成二维机织布作为复合材料的预制铺层.采用层合热压方法制备PP/亚麻纤维复合材料板材.通过对板材弯曲性能的测试及分析,研究了制备工艺、纱线结构及亚麻纤维含量等因素对复合材料弯曲性能的影响.  相似文献   

3.
制备工艺对亚麻增强聚丙烯复合材料拉伸性能的影响   总被引:4,自引:0,他引:4  
以亚麻纤维为增强体,与聚丙烯(PP)长丝进行丝束级共混,形成PP包覆亚麻的纱线结构,利用机织工艺织成二维机织布,作为复合材料的预制件。采用层合热压方法制备PP/亚麻复合材料板材。通过对板材拉伸性能测试及扫描电镜(SEM)拉伸断口形貌分析,研究了不同纤维体积分数、织造密度及织造组织等因素对复合材料拉伸性能的影响。结果表明,在选取最优热压温度与压力的条件下,纤维体积分数为50%的板材性能最优;经向密度相同时,拉伸性能随着纬向密度的增加而提高;经、纬向密度均相同时,斜纹3/1组织的板材性能最优,纬向最大拉伸强度可达92.42 MPa。  相似文献   

4.
研究0°单向、0°/90°交错和平纹织物三种不同铺层方式玄武岩纤维增强复合材料低速冲击加载力学性能。在实验中,通过手糊成型法并在硫化机上加热加压制备层压复合材料,且在Instron9250落锤冲击测试仪上完成层压复合材料低速冲击试验,得到载荷-挠度曲线和载荷-时间曲线,用于分析三种不同铺层方式玄武岩纤维增强不饱和聚酯树脂层压复合材料低速冲击加载力学性能。通过观察层压复合材料破坏形态来分析其破坏方式。实验结果表明:0°/90°交错层压复合材料和平纹织物增强层压复合材料抗低速冲击性能优于0°单向层压复合材料;0°单向层压复合材料破坏方式为裂纹沿着纤维方向伸展,而0°/90°交错层压复合材料和平纹织物层压复合材料破坏只发生在冲击点附近局部区域。  相似文献   

5.
亚麻/聚丙烯机织复合材料薄板的制备与研究   总被引:8,自引:0,他引:8  
本文以聚丙烯长丝作为基体,亚麻纱线为增强体,二者按一定体积含量进行捻合,形成合股纱,采用机织的方法织造亚麻/聚丙烯共织平纹布.选取五层平纹布进行层合热压,制备出亚麻增强聚丙烯(PP)热塑性复合材料薄板.对其拉伸性能进行测试,并分析破坏机理.  相似文献   

6.
本文采用真空辅助树脂渗透成型(VARI)工艺成型了0°/90°玻璃纤维经编织物和0°/90°碳纤维经编织物不同混杂比的复合材料板,并探讨了混杂比、混杂方式等因素对碳-玻纤混杂纤维复合材料的拉伸性能及低速冲击性能的影响。研究结果表明:少量碳纤维的加入便可很好地改善纯玻璃纤维材料的拉伸和冲击性能;同种混杂比下,玻璃纤维铺覆表面的层间混杂结构拥有最好的拉伸性能;对于低速冲击性能来说,随着试样中碳纤维含量的增加,冲击能降低,扩展能降低,韧性指数降低,冲击后剩余压缩强度增大;碳纤维、玻璃纤维含量相接近时,玻璃纤维铺覆表面的层间混杂结构表现出较好的抗低速冲击性能;碳纤维、玻璃纤维含量相差较大时,玻璃纤维铺覆表面的夹芯结构的抗低速冲击性能较好。  相似文献   

7.
本文以天然亚麻纤维为增强纤维,聚丙烯为基体,编织形成不同纤维体积比、不同结构的亚麻/聚丙烯针织物预制件,并经过热压复合制备形成一定的亚麻/聚丙烯针织物增强热塑性绿色环保的民用纺织复合材料。通过对增强纤维及基体材料性能的分析,以及对预制件和复合材料板材结构参数和制备工艺的设计和分析,得到较优的产品结构和制备工艺,认为亚麻/聚丙烯针织结构预制件的编织工序简单且效率高,并可直接热压复合,降低了复合材料的制备成本。4层、6层预制件热压过程中施加的最大压力为10MPa时最优,8层预制件热压过程中施加的最大压力为15MPa时最优。  相似文献   

8.
为了探究连续碳纤维(CCF)增强聚对苯二甲酸乙二酯(PET)预浸带的铺放方式对PET/CCF复合材料板材性能的影响,采用自行设计、组装的熔融浸渍装置,通过熔融浸渍和拉挤成型工艺制备CCF增强PET预浸带。对制备的预浸带进行裁剪并按照0°,0°/90°和0°/90°编织三种不同铺放方式,通过热压制得复合材料板材。测试了复合材料板材的弯曲强度、缺口冲击强度、热导率以及电导率,研究了不同铺放方式对板材的力学性能及导热、导电性能的影响。结果表明,0°方向铺放的PET/CCF复合材料板材综合性能最佳,其弯曲强度可达1 080.09 MPa,缺口冲击强度达到242.99 kJ/m2,热导率为1.46 W/(m·K),较纯PET热导率提高了630%,平行于纤维方向的电导率为0.44×10-3 S/cm,但其垂直于纤维方向的电导率为0.15×10-3 S/cm,低于0°/90°和0°/90°编织两种铺放方式,这是因为相较于0°铺放方式,后两者在90°方向上也有纤维可形成导电路径,有利于电子传输。  相似文献   

9.
以0°,90°,0°/90°,0°/45°/-45°/90°分别作为玻璃纤维(GF)单向铺层方式,研究了不同的铺层方式对GF/EVE(环氧乙烯基酯树脂)复合材料力学性能的影响。结果表明,0°铺层方向的复合材料在单一方向的力学性能最好,0°/45°/-45°/90°铺层方向的复合材料可以看作各向同性材料,应用范围更加广泛。  相似文献   

10.
选取聚丙烯(PP)纤维为基体材料,亚麻纤维为增强材料。运用正交设计法,探讨了PP/亚麻纤维复合材料的模压成型工艺。研究分析了两种纤维的质量比、模压温度、热压保温时间对复合材料力学性能的影响。结果表明,两种纤维的质量比为50:50、模压温度为180℃、热压保温时间为60min时,PP/亚麻纤维复合材料的力学性能最佳。  相似文献   

11.
为制备防弹性能较好的高强聚乙烯复合材料层压板,利用RTM模压成型工艺制备复合材料层压板.对层压板进行弹道损伤测试分析,设计不同铺设角度进行贯穿试验,以及使用高强聚乙烯UD布、平纹织物以及正交三向织物进行背凸试验.试验结果表明,在0°/90°的铺层角度,使用平纹织物作为背部材料时,复合材料层压板具有较好的防弹性能.  相似文献   

12.
采用热压工艺制备连续玻璃纤维(GF)增强聚丙烯(PP)混编纱层合片材及GF呈0°和0°/90°铺放的连续GF增强PP层合片材。通过对3种GF增强PP层合片材进行力学性能测试,结果表明,3种GF增强PP层合片材的拉伸、弯曲强度随着层数的增加基本呈现先升高后降低的趋势。由于层合片材的层间剪切强度存在差异,因而使得3种层合片材产生不同的拉伸及弯曲破坏形式。通过插入PP薄层及PP-g-MAH薄层可改善层合片材的层间剪切性能,但插入PP薄层会降低层合片材的拉伸及弯曲性能,而插入PP-g-MAH薄层有助于提高层合片材的拉伸及弯曲性能。  相似文献   

13.
亚麻纤维增强热固性树脂复合材料板材的研究   总被引:5,自引:0,他引:5  
本文以亚麻纤维作为原料,经过针刺工艺制得亚麻纤维针刺毡,作为复合材料的增强体.通过改变纤维、热固性树脂种类,利用真空辅助RTM方法及模压法制备复合材料板材.对板材进行了拉伸及弯曲性能测试,比较了不同纤维和树脂的结合情况,进一步阐述了板材破坏机理.  相似文献   

14.
对国内采用剑麻纤维(SF)、黄麻纤维(JF)与亚麻纤维(FF)三种麻类植物纤维(BPF)与聚乙烯(PE)、聚丙烯(PP)两种塑料制备复合材料的制备工艺及性能进行了分析,阐述了PE/BPF与PP/BPF复合材料的研究现状,并展望了该类复合材料的应用前景。  相似文献   

15.
通过改变偏轴角为45°和90°的[45°/–45°],[0°/90°]正交铺层组的质量分数,设计了6种复合材料层合板铺层结构。研究了两种偏轴角正交铺层组共同存在的铺层结构对真空辅助树脂传递模塑工艺复合材料层合板弯曲强度及失效行为的影响。通过弯曲实验获得6种复合材料层合板的弯曲强度、损伤特征以及应力–应变曲线。结果表明,随偏轴角为90°的[0°/90°]铺层组质量分数的增加,复合材料层合板的弯曲强度逐渐增大;两种偏轴角正交铺层组共同存在的铺层结构可引起复合材料层合板在弯曲载荷作用下的损伤模式多元化。  相似文献   

16.
亚麻纤维通过针刺工艺加工成非织造布,再经缝合加固后,作为复合材料的增强体,与不饱和聚酯树脂复合,制成亚麻/不饱和聚酯复合材料板材及异型件。利用真空辅助树脂传递模塑法制备出的板材,亚麻纤维和树脂结合较为均匀、充分。模压法形成的亚麻非织造布异型件成型良好,无褶皱与破洞。对板材及异型件拉伸、弯曲及压缩等性能的测试结果表明,板材拉伸强度最大值达58.59MPa,弯曲强度最大值为120.26MPa;采用平行缝合工艺的异型件最大破坏载荷为8.99kN。  相似文献   

17.
分别采用平纹、斜纹编织的丙纶长纤维与聚丙烯树脂(PP)经热压成型制备丙纶纤维/PP复合材料。比较两种编织形式对复合材料力学性能的影响,并通过扫描电子显微镜(SEM)及动态力学分析(DMA)对复合材料的微观形貌、热性能进行分析。结果表明,不同织物形式具有不同的浸润性能,并直接影响复合材料的力学性能。总体而言,斜纹丙纶纤维增强PP的拉伸性能及弹性模量要高于平纹织物增强PP;而平纹丙纶纤维增强PP的冲击强度要高于斜纹丙纶纤维增强PP。从SEM结果可以看出,15 phr丙纶纤维与PP树脂相容性较好,并且斜纹丙纶纤维与基体之间的间隔比平纹丙纶纤维与基体之间的间隔更小。DMA分析表明,斜纹丙纶纤维增强PP的玻璃化转变温度更大。  相似文献   

18.
采用自行设计、组装的连续纤维增强热塑性树脂基复合材料粉末浸渍试验装置制备了连续碳纤维(CF)增强聚醚醚酮(PEEK)预浸带,再将浸渍带通过热压模塑成型制备出层合板材。通过万能材料试验机、悬臂梁冲击试验机研究了纤维含量和浸渍带铺放方式对板材力学性能的影响。结果表明,在一定范围内CF/PEEK板材弯曲、冲击强度随着纤维含量的增大而提高,拉伸强度达1 124. 89 MPa,约是PEEK纯料的11倍,浸渍带以0°铺放压制的纤维含量为60%的板材力学性能相对最优。扫描电子显微镜(SEM)结果表明,纤维被树脂基体紧密包覆,纤维分散均匀、排列紧密、界面黏结性较好。  相似文献   

19.
亚麻/聚丙烯复合材料的成型工艺和拉伸性能研究   总被引:2,自引:2,他引:0  
本文探讨了亚麻/聚丙烯纤维复合材料的制备工艺和拉伸性能.对亚麻纤维含量分别为30%、40%、50%、60%、70%的复合材料进行比较,分析增强纤维含量对复合材料拉伸性能的影响;对模压温度分别为150℃、160℃、170℃、180℃、190℃的复合材料进行比较,分析模压温度对复合材料拉伸性能的影响,最后确定模压温度及亚麻/聚丙烯纤维的混合比.  相似文献   

20.
玻璃纤维复合材料抗弹性能的研究   总被引:1,自引:0,他引:1  
通过对玻璃纤维复合材料力学性能和抗弹性能的研究,分析了影响玻璃纤维复合材料抗弹性能的因素,从而得出制备玻璃纤维复合材料的最佳工艺参数。试验表明:采用改性乙烯基酯树脂、较小单丝直径(9μm)的玻璃纤维单向布、0°/90°的铺层方式以及48%~55%的纤维体积分数,均有利于玻璃纤维复合材料抗弹性能的提高。并且随着复合材料厚度的增加,其抗弹性能(V50值与SEA值)也将有不同程度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号