首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为从某选钛厂尾矿中有效回收钛资源、提高原矿相对利用率,对TiO2品位5.81%的选钛厂入库尾矿进行了选矿工艺研究,制定了重选-磁选工艺流程,并研究了磁选过程中磁场强度,重选过程中上升水流量、给矿速度、给矿浓度等对钛铁矿选别指标的影响。结果表明,经+38μm粒级重选,-38μm粒级分级底流重选、分级溢流磁选的重选-磁选联合工艺选别,能够获得TiO2品位16.08%、回收率62.63%的粗精矿,抛出产率77.41%、TiO2品位2.39%的尾矿,大大减少了后续浮选流程入矿量。  相似文献   

2.
张敏 《矿冶工程》2014,34(1):54-56
对印度尼西亚某海滨铁砂进行了选矿探索试验研究。试验结果表明, 该矿石主要金属矿物为钛磁铁矿、钛铁矿等, 原矿石不磨直接进行分选, 采用磁选-重选联合工艺, 可获得产率23.46%, TFe品位58.08%、含TiO2 12.48%、含V2O5 0.57%, TFe回收率69.70%的铁精矿, 有效回收了海滨铁砂中的铁、钛及钒。  相似文献   

3.
螺旋溜槽回收某细粒级钛铁矿的试验研究   总被引:1,自引:0,他引:1  
针对某矿样钛品位低(TiO2品位10.18%)、物料粒度细、重矿物含量高、脉石具有一定磁性的特点,采用一粗二扫螺旋溜槽重选流程预先富集钛,得到TiO2品位15.63%的重选精矿; 再经一粗三精浮选流程最终获得钛精矿TiO2品位46.35%、作业回收率69.95%、对原矿回收率48.27%。  相似文献   

4.
马拉维湖滨型钛铁砂矿选冶分离试验研究   总被引:1,自引:0,他引:1  
对马拉维湖滨砂矿进行了工艺矿物学和选冶分离试验研究。结果表明,通过磁选、摇床重选、电选及还原焙烧等选冶联合工艺,获得了TiO2品位49.85%、全流程回收率61.03%的合格钛精矿和ZrO2品位大于63%、全流程回收率52.51%的锆精矿,同时综合回收了TFe品位分别为65.80%和48.74%的2种铁精矿。  相似文献   

5.
莫桑比克某海滨砂矿TiO2品位3.33%, 为开发利用该资源, 开展了重选-磁选工艺试验研究。原矿搅拌调浆后, 经过螺旋溜槽一次粗选和一次精选、重选精矿弱磁选、弱磁尾矿强磁选工艺处理, 可获得TiO2品位39.15%、TiO2回收率74.63%的钛精矿。研究成果为该资源的后续处理提供了数据支撑和技术支持。  相似文献   

6.
以含TFe 67.70%,SiO2 4.88% 的普通铁精矿为原料,采用磨矿、弱磁选-磁重选-反浮选工艺,可生产出含TFe 72.02%,SiO2 0.27% 的超纯铁精矿,同时可获得TFe 品位70.57%的普通铁精矿,TFe 总回收率达91.96% 。  相似文献   

7.
论文以攀西地区白马辉长岩型超低品位钒钛磁铁矿为研究对象,查明了该矿石中化学组分、矿物组成、铁和TiO2的相态。在此基础上进行了多粒级多磁场梯度干式磁选抛尾试验,通过铁和TiO2的相态分析阐述了干式磁选抛尾的合理性;进行了干式磁选精矿阶段磨矿阶段选别试验,二段磁选在-200目占80%细度下获得了TFe 57.78%、TiO2 7.72%、V2O5 0.69%的铁精矿,铁精矿产率为12.93%、铁回收率51.56%,相对磁性铁回收率为98.70%,V2O5回收率78.26%。结果表明该矿石虽然铁品位低,仍具综合回收利用价值。   相似文献   

8.
戴新宇  余德文 《金属矿山》2007,37(12):128-130
承钢黑山选钛厂二段强磁尾矿中尚含有一定量的钛铁矿。为减少资源浪费,进行了从该尾矿中回收钛的选矿试验研究。结果表明,采用螺旋溜槽粗选-摇床精选单一重选流程,可得到TiO2品位为32.12%、TiO2回收率为38.02%粗钛精矿,该产品可作为钢铁厂护炉原料销售;采用螺旋溜槽粗选-摇床精选-硫浮选-钛浮选联合流程,可得到TiO2品位在47%左右的合格钛精矿,同时可获得S品位在39%以上的的硫精矿副产品。  相似文献   

9.
王建平 《矿冶工程》2016,36(3):47-50
采用ZCLA选矿机对攀枝花钒钛磁铁矿进行了预选抛尾试验研究。给矿TFe品位29.51%、TiO2品位10.85%时, 经ZCLA预选抛尾, 精矿TFe品位可提高2.90个百分点, 抛尾产率12.99%, 尾矿TFe 品位10.08%、TiO2品位4.62%, mFe含量仅0.64%, 尾矿可作为废石直接排入尾矿库。该工艺为攀枝花低品位钒钛磁铁矿及表外矿的预选抛尾提供了新途径。  相似文献   

10.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿; 弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿; 强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

11.
对国外某含铁54.09%、二氧化钛8.10%、二氧化锆0.33%、金红石0.057%的铁砂矿样品进行综合利用试验研究。最终采用弱磁选-重选-强磁选-电选的原则工艺流程,获得了全铁品位60.20%、全铁回收率85.58%的钛磁铁精矿,全铁品位51.69%、全铁回收率11.04%的钛赤铁矿精矿,二氧化锆品位60.04%、回收率77.53%的锆英石精矿以及二氧化钛品位85.58%、金红石回收率59.06%的金红石精矿。  相似文献   

12.
以辽宁本溪某原矿TFe品位30.45%的铁矿为原料制备超级铁精矿。采用阶段磨矿-弱磁选-磁选柱降硅-反浮选提纯工艺,可以获得TFe品位71.25%、回收率65.02%、SiO2含量0.15%、酸不溶物含量0.10%的低杂质合格超级铁精矿,以及TFe品位65.28%、回收率19.64%的普通铁精矿。  相似文献   

13.
攀枝花朱家包包低品位钒钛磁铁矿选矿研究   总被引:1,自引:1,他引:0       下载免费PDF全文
对含TFe为13.54%,Ti O2为7.31%的攀枝花低品位钒钛磁铁矿,进行了粗磨湿式中磁抛废、细磨弱磁选铁和选铁尾矿强磁-浮选选钛的选矿工艺试验研究。该工艺最终获得了含TFe为55.18%,回收率为39.98%铁精矿和含Ti O2为46.13%,回收率为43.70%钛精矿,实现了对原矿中铁、钛的较佳回收。  相似文献   

14.
某低品位钛铁矿TFe含量为10.20%、TiO2品位为4.55%,属于低铁低钛等级矿石。矿石成分简单,主要工业矿物为钛铁矿和磁铁矿,主要脉石矿物为角闪石、长石。针对该矿石,首先进行了重磁拉抛尾,获得了TFe含量为12.31%,TiO2品位为5.81%的抛尾粗精矿;抛尾粗精矿经磨矿—选铁处理后,采用"螺旋溜槽+干式磁选"工艺,获得了TiO2品位为46.17%的钛精矿产品,回收率为46.72%。实现了矿石中铁、钛矿物的高效回收。  相似文献   

15.
复杂难选含钨铁矿选矿工艺研究   总被引:1,自引:1,他引:0  
对某WO3 0.23%、TFe品位22.09%的含钨铁矿进行了选矿工艺研究。采用先浮选回收钨、浮选尾矿磁选回收铁的工艺, 可获得含WO3 63.24%、回收率87.14%、TFe含量为0.48%的钨精矿和TFe品位62.03%、回收率41.67%的铁精矿, 钨和铁均得到了较好的回收。  相似文献   

16.
摘要:攀钢密地选矿厂阶磨阶选流程改造后,产品的物料特性发生了变化,尾矿品位较改造前有所增加。选铁尾矿中品位TFe16.16%, TiO211.03%,尾矿中铁品位偏高,有必要进行降低尾矿中的铁品位的试验研究。研究结果表明,采用弱磁选可获得产率为5.02%,品位为TFe57.24%,回收率为17.78%的铁精矿;采用弱磁选—强磁选—浮选工艺流程,可获得产率为10.41%,TiO2品位为47.15%,回收率为44.49%的钛精矿。将所有尾矿混合,其混合尾矿降低至TFe11.42%, TiO25.97%,研究结果对密地选矿厂的流程改造有一定的参考作用。   相似文献   

17.
本选矿试验探讨了TFe品位11.66%、TiO2品位5.24%的含铁辉长岩中钛铁矿的选矿方法。通过试验,针对其铁钛矿物含量低且嵌布相对较细的特点,采用优先选钛的主体工艺,“弱磁 两段强磁 一粗五精”的流程,获得产率2.97%、TiO2品位47.00%、回收率28.66%的高钛、含钒的优质钛精矿。实现资源综合利用,为含铁辉长岩中钛铁矿回收利用提供了技术依据。   相似文献   

18.
陈达  闫武 《矿产综合利用》2012,(1):21-23,45
简述了Windimurra钒钛磁铁矿主要金属元素的赋存、主要矿物组成及矿物含量。磁选条件试验确定了该矿的试验磁场强度(磁选粗选、扫选磁场强度为280kA/m、350kA/m)和粒度(-0.5mm),并进行了一粗一扫一精、扫选精矿同精选尾矿合并后再磁选流程的闭路试验,最终获得了产率为41.93%,TFe、TiO2、V2O5品位分别为52.14%、18.52%、1.04%,TFe、TiO2、V2O5回收率分别为72.26%、83.30%、82.43%的钒(铁)精矿,对钛磁铁矿(包括钛磁赤铁矿、钛赤铁矿和钛磁铁矿)和钛铁矿矿物的回收率分别为84.32%、84.85%,能有效地回收该资源中的铁、钛、钒。  相似文献   

19.
李韦韦 《现代矿业》2020,36(7):111-115
加拿大某钒钛磁铁矿石Fe品位为4256%,TiO2品位为1065%,V2O5品位为033%,Cr2O3品位为122%,矿石中的金属矿物主要为钛磁铁矿和钛铁矿,绝大部分有用元素赋存在钛磁铁矿中。为确定该矿石的开发利用工艺,进行了选矿试验。结果表明:采用两阶段磨矿阶段弱磁选工艺,可获得Fe、TiO2、V2O5、Cr2O3品位分别为5276%、1021%、042%、164%,回收率分别为8714%、6738%、8945%、9391%的铁精矿;弱磁选铁尾矿采用强磁选+重选选钛流程,可获得TiO2品位为4703%的钛精矿,相对弱磁选铁尾矿的回收率为734%。  相似文献   

20.
红格南矿区钒钛磁铁矿多为橄辉岩型矿石,其矿物组成种类繁多,矿物嵌布特征和结构构造较为复杂,其钒铁精矿产品TFe品位较低,仅为54.08%,TiO2品位为12.55%,主要脉石矿物橄榄石和辉石。故本文针对该钒铁精矿开展了多种设备及工艺的试验研究,最终采用“细磨-深选”、“细磨-新型复合力场精选机精选”两种工艺方案为钒铁精矿合理的提质降杂工艺。在磨矿细度-400目占87.67%情况下,细磨-深选工艺可获得钒铁精矿TFe品位56.21%,回收率95.68%的指标;细磨-新型复合力场精选机精选工艺可获得钒铁精矿品位56.48%,TFe回收率97.33%,TiO2品位11.88%的指标。该技术方案对于红格地区钒铁精矿的提质降杂具有十分重要的现实意义。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号