首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 594 毫秒
1.
油炸食品中丙烯酰胺的安全性分析   总被引:8,自引:0,他引:8  
阐述了食品中丙烯酰胺产生的机理,丙烯酰胺形成的主要原因,食品中丙烯酰胺的主要分析方法,对丙烯酰胺的毒理学和食用含有丙烯酰胺食品的风险进行了讨论,并提出了相关的安全性对策措施。  相似文献   

2.
油炸马铃薯食品中发现丙烯酰胺的研究近况   总被引:4,自引:1,他引:4  
对油炸或焙烤马铃薯食品中的丙烯酰胺含量、食品中丙烯酰胺含量的分析方法、丙烯酰胺毒性问题的最新研究结果进行了综述。现有研究结果表明 ,炸薯片、炸薯条中含有较高含量的丙烯酰胺 ,过度油炸会进一步增加薯条中的丙烯酰胺含量 ,而相应的生马铃薯原料与煮熟马铃薯中则不含丙烯酰胺。食品中丙烯酰胺含量的分析方法目前采用气相色谱 -质谱法 (GC MS)与液相色谱 串联质谱联用新技术 (LC/MS/MS) ,但食品中丙烯酰胺含量的分析方法、丙烯酰胺的毒理学研究仍在进一步发展中。  相似文献   

3.
食品中丙烯酰胺分析方法研究进展   总被引:1,自引:0,他引:1  
自从食品中发现一种潜在的致癌物质———丙烯酰胺后,世界各国的科学家进行了广泛深入的研究,在食品中丙烯酰胺的分析方法、形成机理、减少措施、暴露研究及风险评估等方面均有所进展。文中主要集中在食品中丙烯酰胺分析方法研究方面,主要包括水源水中丙烯酰胺的分析、聚丙烯酰胺中残留丙烯酰胺的分析以及采用GCMS、LCMS和LCMS/MS连用的方法精确分析食品中的丙烯酰胺,并提出了对食品中丙烯酰胺研究的进一步展望。  相似文献   

4.
食品中丙烯酰胺分析方法研究进展   总被引:1,自引:1,他引:0  
丙烯酰胺由于其神经毒性及其可能致癌性,引起了各国科学家的对其深入广泛的研究。文中介绍了食品中丙烯酰胺的分析方法及样品前处理方法的研究进展,包括提出了对食品中丙烯酰胺分析方法的新的需求。  相似文献   

5.
热加工食品中丙烯酰胺的形成机理和风险分析   总被引:1,自引:0,他引:1       下载免费PDF全文
阐述了食品中丙烯酰胺产生的机理.丙烯酰胺是一种具有神经毒性的小分子化合物,它主要由游离的天门冬酰胺在食品加工过程中通过美拉德反应形成.天门冬酰胺和碳水化合物是形成丙烯酰胺必需的物质基础,高温(高于120 ℃)则是丙烯酰胺形成的关键条件,加工方式、水活度、pH值等因素也影响其形成.目前食品中丙烯酰胺的分析主要采用气相色谱-质谱法(GC-MS)与液相色谱-串联质谱联用技术(LC-MS/MS).作者对丙烯酰胺的分析方法进行了研讨并对丙烯酰胺的毒理学和食用含有丙烯酰胺食品的风险进行了讨论.  相似文献   

6.
面包经过高温烘烤会产生危害人体健康的丙烯酰胺。本文针对面包中丙烯酰胺分析方法的改进进行研究,建立一套简单实用的丙烯酰胺检测方法,希望为研究抑制食品中丙烯酰胺的产生提供依据,从而对于提高焙烤食品的安全性,降低消费者健康风险,起到积极意义。  相似文献   

7.
食品中丙烯酰胺研究进展   总被引:5,自引:0,他引:5  
丙烯酰胺是一种对人体有神经毒性和潜在致癌性的物质,2002年首次发现在高温油炸后的富含碳水化合物食品中存在,并引起了世界各国研究者的广泛关注.本文就丙烯酰胺的性质、食品中丙烯酰胺的研究渊源、分析方法、含量分布、形成机制以及工艺控制等方面的研究进展进行了综述,并提出今后的深入研究方向.  相似文献   

8.
丙烯酰胺微量分析研究进展   总被引:10,自引:3,他引:7  
杨昀 《食品科学》2004,25(4):188-192
文章回顾了二十世纪八十年代以来公布过的饮用水、空气特别是去年备受关注的食品中微量丙烯酰胺分析方法的研究进展,以德国的实验室间丙烯酰胺协同实验研究为例,对丙烯酰胺的微量分析提出讨论和评价。  相似文献   

9.
《食品与发酵工业》2017,(7):265-270
丙烯酰胺是高温加工食品中一种常见的对人体有潜在危害的化学物质,其主要通过美拉德反应生成,但美拉德反应对改善食品色泽、风味等起到重要作用,因此如何有效抑制食品中丙烯酰胺的形成成为国内外研究热点。利用微生物对原料进行预处理具有抑制食品中丙烯酰胺形成的作用。文章简要介绍了食品中的丙烯酰胺以及微生物抑制丙烯酰胺形成的主要途径,重点阐述了微生物预处理在食品加工过程中抑制丙烯酰胺形成的研究,旨在为今后食品中丙烯酰胺的减控研究提供参考。  相似文献   

10.
丙烯酰胺是食品热加工中产生的一种潜在致癌物质,并且具有神经毒性、生殖毒性和遗传毒性,对人体健康危害较大。近年来有关丙烯酰胺的致癌机理、生成机理、分析方法和控制策略等方面都获得诸多研究成果,而对于抑制机理之间的关系,报导较少。本文基于丙烯酰胺的主要形成途径即食品原料中的天冬酰胺和还原糖通过高温加热条件反应生成丙烯酰胺的这一反应为基础,结合最新的文献研究,对丙烯酰胺的抑制作用机理和特定原理下的抑制剂进行系统概述,为将来寻找丙烯酰胺抑制剂和其作用机理研究提供理论参考。  相似文献   

11.
综述了膨化食品的研究进展以及丙烯酰胺的检测方法,介绍了关于丙烯酰胺潜在毒性存在的争议。提出了膨化食品的发展方向和减少丙烯酰胺的策略。  相似文献   

12.
In early 2002, the Swedish National Food Administration reported high acrylamide levels in heat-treated carbohydrate-rich foods. Consequently, intensive activity began examining the many different types of food, and thousands of analyses have been undertaken world wide. Measurement data have been published in many different types of media. Within this flood of publications, there are only a limited number of articles concerned with the technical aspects of the measurements. This review focuses on the state-of-the-art in the analysis of acrylamide in foodstuffs. It covers information on methods from peer-reviewed articles and other sources (e.g. a survey carried out among official and private laboratories of the Member States of the European Union). Alternative methods are presented and discussed alongside the more common measurement techniques for acrylamide in foodstuffs. Special attention is given to sample preparation. The greatest differences between the analytical methods was for acrylamide extraction and clean-up. The influence of different extraction techniques or extraction solvents/solvent mixtures on the measurement results has not yet been fully investigated. There is also a lack of understanding about the sample clean-up. Since both might have a large impact on the results of the analysis, this review should also be considered as a basis for further investigations.  相似文献   

13.
Acrylamide is the product of the Maillard reaction, which occurs when starchy, asparagine-rich foods including potato or grain products and coffee are fried, baked, roasted, or heated. Studies in rodents provide evidence that acrylamide is carcinogenic and a male reproductive harmful agent when administered in exceedingly high levels. A 2002 study identified acrylamide in popular consumer food and beverage products, stimulating the European Union (EU) and California to legislate public notice of acrylamide presence in fried and baked foods, and coffee products. The regulatory legislation enacted in the EU and California has scientists working to develop foods and processes aimed at reducing acrylamide formation and advancing rapid and accurate analytical methods for the quantitative and qualitative determination of acrylamide in food and beverage products. The purpose of this review is to survey the studies performed on rodents and humans that identified the potential health impact of acrylamide in the human diet, and provide insight into established and emerging analytical methods used to detect acrylamide in blood, aqueous samples, and food.  相似文献   

14.
Acrylamide in Foods: Chemistry and Analysis. A Review   总被引:1,自引:0,他引:1  
Acrylamide is a potential cause of a wide spectrum of toxic effects and is classified as probably “carcinogenic in humans”. The discovery of acrylamide in human foods has given rise to extensive studies exploring its formation mechanisms and levels of exposure and has spurred search into suitable analytical procedures for its determination in foodstuffs. However, the exact chemical mechanisms governing acrylamide formation are not yet known and cheap, convenient, and rapid screening methods are still to be developed. Acrylamide in food is produced by heat-induced reactions between the amino group of asparagine and the carbonyl group of reducing sugars along with thermal treatment of early Maillard reaction products (N-glycosides). Similarly, the decarboxylated Schiff base and decarboxylated Amadori compounds of asparagine as well as the Strecker aldehyde have been proposed as direct precursors and intermediates of acrylamide. Corresponding chromatographic methods are used to determine various structural groups present in Maillard reaction model systems. Gas chromatography-mass spectrometry and liquid chromatography with tandem mass spectrometry analysis are both acknowledged as the main, useful, and authoritative methods for acrylamide determination. This review is an attempt to summarize the state-of-the-art knowledge of acrylamide chemistry, formation mechanisms, and analytical methods. Special attention is given to comparison of different chromatographic techniques, particularly the novel, simple, and low-cost methods of its determination.  相似文献   

15.
综述了关于婴幼儿乳粉中氯丙醇酯和缩水甘油酯(GEs)、氯酸盐、高氯酸盐、多氯联苯(PCBs)、丙烯酰胺、矿物油、全氟及多氟烷基化合物(PFASs)的污染来源、分析方法、污染水平等方面的研究进展,指出现阶段婴幼儿乳粉新兴持久性有机污染物(POPs)国内外污染现状以及检测技术的优缺点,并对婴幼儿乳粉的新兴POPs检测技术发展与种类进行了展望。  相似文献   

16.
食品中丙烯酰胺的抑制方法研究进展   总被引:5,自引:3,他引:2       下载免费PDF全文
近年来食品中丙烯酰胺的研究是食品安全领域研究工作的一个热点。本文简略介绍了食品中丙烯酰胺的形成机制,详细综述了目前国内外在实验室和工业生产中对于如何抑制其生成而探索到的方法,并针对当前存在的一些问题进行探讨,例如:当前大多数研究是在实验室进行的,能否在工业生产中起效还有待进一步研究;国家应尽快制定相关行业标准,对生产企业起到监管作用。  相似文献   

17.
褐藻寡糖检测方法的建立   总被引:1,自引:0,他引:1  
通过不同的检测方式建立褐藻寡糖的快速定性检测方法,为褐藻寡糖(AOS)的制备提供快速而准确的检测依据。结果表明,相同的褐藻寡糖样品通过薄板层析法(TLC)、荧光辅助糖电泳法(FACE)以及高效液相色谱法(HPLC)均可以得到较为理想的检测结果。优化后的3种方法的检测条件依次为:TLC法:正丁醇∶甲酸∶水=4∶5∶1,上行展开两次;FACE法:酶解及酸解的褐藻寡糖经过8-氨基萘-1,3,6-三磺酸(ANTS)胺化还原衍生16h,适宜的聚丙烯酰胺凝胶浓度分别为25%、35%,恒压400V电泳1h后,1 000V电泳4h;HPLC法:色谱柱:TSK-GEL DEAE-2SW 4.6mm×250mm;流动相:0—0.25MNaCl在60min内梯度洗脱;流速:0.8 mL/min、波长:230nm。  相似文献   

18.
The emerging trend towards high-resolution mass spectrometry (MS) alternatives was evaluated by the application of Orbitrap MS for the determination of acrylamide in coffee samples. The high resolving power of the Orbitrap MS provided the high selectivity and sensitivity that enabled quantitative analysis of acrylamide in complex matrices, such as coffee. Several sample preparation methods and scanning modes of the MS (full MS, t-SIM, t-MS2) were assessed in order to optimise parameters of the analytical method. The final procedure involved the extraction of acrylamide with acetonitrile, solid-phase extraction with dispersive primary secondary amine (PSA) and amino columns, and the detection by ultra-performance liquid chromatography coupled to a hybrid quadrupole-Orbitrap MS (HPLC-Q-Orbitrap) operated in targeted MS2 scanning mode. The repeatability of the method at the lowest calibration level (10 μg kg?1), expressed as relative standard deviation, was 7.8% and the average recovery of acrylamide was 111%. The proposed method was applied to the determination of acrylamide in 22 samples of roasted coffee obtained from the Latvian retail market. Acrylamide concentration in coffee samples was in the range of 166–503 μg kg?1.  相似文献   

19.
G. Viklund  F. Mendoza  K. Skog 《LWT》2007,40(6):1066-1071
The objective of this work was to set up lab-scale equipment for production of crisps mimicking industrial conditions. Slices of Saturna potatoes were deep-fat fried for 2-4.5 min at 160 °C. A solid phase extraction method for acrylamide from potato crisps was used, and the extraction recovery was calculated to 95%. Acrylamide was analysed using liquid chromatography tandem mass spectrometry. The relative standard deviation was below 3% for analyses performed on the same day and below 5% for inter-day analyses. The limit of quantification was estimated to be 160 μg/kg potato crisps. The colour of potato slices was determined using a digital imaging method and related to the acrylamide content. There were tendencies that L*(lightness) decreased and that that a*(redness) and b*(yellowness) increased with increasing acrylamide content. In another experiment, potatoes with different glucose levels were fried for 4 min but no significant difference in acrylamide content (2200-2800 μg/kg) was observed. The experiment was repeated after three months of storage. The levels of acrylamide increased significantly to 8200-13200 μg/kg. The potatoes had been fertilized with different levels of nitrogen, but no relation was found between the nitrogen supplied and the acrylamide content. The experimental set-up was shown to give realistic and reproducible experimental data, regarding colour, water content and acrylamide levels. It will be used together with the analytical methods as a platform for further research on the formation of acrylamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号