首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post‐weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n‐3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n‐3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5‐month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19‐day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n‐3 and n‐6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n‐6:n‐3 ratio in dams only. The PL fraction showed decreased n‐6 PUFA in both dams and pups. The magnitude of the diet‐mediated responses, specifically TAG 18:1 and PL n‐6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet‐induced changes in bone lipids on bone structure, as quantified through micro‐computed tomography.  相似文献   

2.
Pellizzon M  Ana JS  Buison E  Martin J  Buison A  Jen KL 《Lipids》2004,39(5):441-448
Modification of milk fat both by partially replacing saturated FA with oleic acid (18∶1) and by increasing calcium intake independently reduces plasma cholesterol. Whether modification of both factors together would synergistically reduce plasma cholesterol is unknown. Seventy-two male golden Syrian hamsters were separated into four diet treatment groups (n=18/group) and fed ad libitum for 7 wk. Diets contained either modified milk fat (MMF) or regular milk fat (RMF) with either 0.5% (MMF and RMF) or 1.3% calcium (w/w) (MMFC and RMFC). All diets contained 11% test fat, 4% soybean oil, and 0.15% cholesterol (w/w). During the last week, feces were collected for three consecutive days for analysis of fecal FA, cholesterol, and calcium excretion. Overnight-fasted animals were sacrificed, and plasma and livers were collected for lipid analysis. Neither MMF nor additional calcium significantly affected plasma lipids. However, significant interactions existed between MMF and additional calcium for the ratio of LDL cholesterol to HDL cholesterol (LDL/HDL), indicating that increased calcium intake reduced this ratio only in RMF animals. In addition, MMF reduced LDL/HDL relative to RMF. MMF significantly increased hepatic total and esterified cholesterol. Additional calcium significantly increased fecal calcium and saturated FA (SFA) excretion, whereas MMF significantly reduced SFA excretion. RMFC induced the highest excretion of 16∶0 among all groups. Replacement of SFA with 18∶1 in the MMF reduced the impact of high calcium on LDL/HDL. Additional calcium reduced LDL/HDL only in the presence of RMF, which may be achieved through an increased excretion of 16∶0.  相似文献   

3.
4.
Ealey KN  El-Sohemy A  Archer MC 《Lipids》2002,37(9):853-861
CLA inhibits mammary cancer and reduces body fat accumulation in rodents. It is not known whether uncoupling proteins (UCP), which are modulators of energy balance and metabolism, play a role in these actions of CLA. To determine the effects of dietary CLA on the expression of UCP in various tissues, 5-wk-old Sprague-Dawley rats and C57BI/6 mice were fed diets containing 1% CLA for 3 wk. CLA treatment reduced adipose depot weights in both rats and mice but had no significant effects on body weight. There was a species-specific effect of CLA on the expression of UCP. Whereas CLA did not affect the expression of UCP in most tissues in rats, mice fed CLA had increased expression of UCP2 in the mammary gland, brown adipose tissue (BAT), and white adipose tissue (WAT). Furthermore, UCP1 and UCP3 mRNA and protein levels in BAT were significantly lower in CLA-fed mice compared to controls. Skeletal muscle UCP3 mRNA was unchanged, but UCP3 protein levels were significantly increased in mice, suggesting translational or posttranslational regulation of this protein. Results from this study suggest that alterations in the expression of UCP in mice may be related to the previously reported effects of dietary CLA in lowering adiposity and increasing FA oxidation. In rats, however, induction of UCP is not likely to be responsible for fat reduction or for the inhibitory action of CLA on mammary carcinogenesis.  相似文献   

5.
Dietary supplements of olive oil (OO) or fish oil (FO) during the first (G1: day 1–60) or second half of gestation (G2: day 60 to term, day 115) were offered to pregnant sows. The proportion of fatty acids in milk and plasma were determined by gas chromatography. When supplements were given during G1, the proportions of oleic acid (OA) and arachidonic acid (AA) in the plasma were higher in the OO group than in the FO group, whereas docosahexaenoic acid (DHA) was higher in the latter group at day 56 of gestation. These differences in plasma DHA were still apparent at day 7 of lactation. Similarly, DHA was also higher in the colostrum and milk on days 3 and 21 of lactation and in the plasma of piglets from FO dams compared to the OO group, whereas AA was lower. When the FO supplement was given during G2, AA was lower and DHA higher in the plasma at day 105 of gestation and at day 7 of lactation compared with the OO group. Likewise, DHA was greater in FO than in OO animals during lactation in colostrum and in milk on days 3 and 21 of lactation, and in 3-day old suckling piglets plasma, whereas AA was lower in these animals. Thus, maternal adipose tissue plays an important role in the storage of dietary long-chain polyunsaturated fatty acids (LCPUFA) during G1. They are mobilized around parturition for milk synthesis, and an excess of dietary n-3 LCPUFA decreases the availability of AA in suckling newborns.  相似文献   

6.
Nieminen P  Mustonen AM 《Lipids》2007,42(7):659-669
The mobilization of fatty acids (FA) is a selective process in humans, rodents and the few previously studied carnivores. The FA composition of and mobilization from different fat depots reflect the functions of adipose tissues, e.g. in energy storage or insulation. Sixteen farm-raised sables (Martes zibellina), a terrestrial mustelid, were assigned into a fed control group or fasted for 4 days. The FA composition of the sable was relatively similar to other previously studied mustelids. The masses of the different fat depots decreased by 28–55% during fasting. The subcutaneous (sc) and intraabdominal (iab) fats had a uniform FA composition and the sable could mobilize both sc and iab FA. 18:3n-3, 18:4n-3 and 16:1n-7 were effectively mobilized, while long-chain saturated (SFA) and monounsaturated FA (MUFA) increased in proportion. Relative mobilization (RM) correlated inversely with the FA chain length and Δ9-desaturation increased RM of several MUFA compared to SFA. The results reinforce the hypothesis that the terrestrial sable can utilize sc and iab fat depots as energy reserves during nutritional scarcity. The natural history of the species is an important determinant of the FA composition and RM between anatomically different fat depots.  相似文献   

7.
To provide molecular evidence on the thermogenic mechanism of primary brown adipocytes, western blot analysis was used to detect brown adipose tissue (BAT)-specific gene expressions. BAT protects the mammals from hypothermia injury with a large amount of mitochondria and high expression of uncoupling Protein 1 (UCP1), which is the vital protein to determine the heat production in BAT. In our previous study, the compound ZW290 (the structure shown in Fig. 1) was obtained by molecular docking with a UCP1 inducer. In the present study, ZW290 not only significantly upregulated the expression of UCP1 protein (p < 0.01) and its related signaling pathway in the primary brown adipocytes, but also remarkably decreased the mitochondrial membrane potential and the concentration of adenosine triphosphate (ATP) (p < 0.01). Kunming (KM) mice were kept under acute cold exposure (−20°C) to evaluate the preventive and protective effects of ZW290 on cold injury, and revealed its regulating mechanism in vitro. The rectal and body temperatures of ZW290-treated mice were significantly higher than those of the control (or model) group both at room temperature and at −20°C (p < 0.001). Hematoxylin–eosin (HE) staining and immunohistochemistry indicated that ZW290 notably decreased the size of lipid droplets in BAT and increased the content of mitochondria and the expression of UCP1 in BAT and white adipose tissue (WAT). Furthermore, the survival rate showed that ZW290 could prolong the overall survival of mice. Therefore, we obtained the conclusion that ZW290 might transform energy into heat by inhibiting ATP synthesis and increasing the expression of UCP1. Additionally, ZW290 may enhance cold tolerance by increasing heat production through increasing the content of mitochondria and the expression of UCP1 in BAT and WAT.  相似文献   

8.
Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.  相似文献   

9.
There is evidence of the role of milk components in the metabolic programming of offspring. Here, we aimed to investigate the effects of a diet during lactation on breast milk leptin, adiponectin, and related miRNAs’ expression, and their impact on dams and their offspring. Dams were fed a control diet (controls) or a diet enriched with oleic acid, betaine, and leucine (TX) throughout lactation. A TX diet promoted higher leptin at lactation day (LD) five and lower adiponectin on LD15 (vs. controls) in milk, resulting in increased leptin to adiponectin (L/A) ratio throughout lactation. Moreover, TX diet reduced milk levels of miR-27a, miR-103, miR-200a, and miR-222. Concerning TX offspring, higher body fat was early observed and maintained into adult life, accompanied by higher HOMA-IR than controls at three months of age. Offspring body fat content in adulthood correlated positively with milk L/A ratio at LD15 and negatively with miRNAs modulated by the TX diet. In conclusion, maternal diet during lactation can modulate leptin and adiponectin interplay with miRNAs in milk, setting up the metabolic programming of the offspring. Better knowledge about the influence of diet on this process is necessary to promote a healthy adult life in the progeny.  相似文献   

10.
It has been demonstrated that in pathological conditions with an increase in the calculated mean melting point (MMP) of phospholipid (PL) fatty acids (FA) there are changes in the composition of the saturated FA (SFA), which partially counteract this effect: shorter-chain SFA with lower melting points are increased, while longer-chain less fluid SFA are suppressed. The aim of this study was to determine whether there are differences in MMP during pregnancy and in the newborn and, if so, whether similar adaptive changes occur in the composition of the SFA The FA composition of plasma PL was determined in healthy women (n-16) twice during pregnancy (15–24 wk and 29–36 wk) and at delivery and in umbilical venous blood obtained at birth. The MMP of maternal PL was significantly higher at delivery compared to mid-gestation, due to a loss of highly unsaturated FA (HUFA) which were replaced by SFA. In addition, changes in the SFA occurred; 16∶0 with lower melting point was higher while 18∶0 with higher melting point was lower at delivery. MMP of PL FA in umbilical plasma was lower than in maternal plasma at delivery, which was due to higher HUFA content. In contrast to maternal plasma, 16∶0 was lower while 18∶0, 20∶0 and 24∶0 were higher in umbilical plasma resulting in a higher MMP of SFA, tending to raise the overall MMP. It can be concluded that, during pregnancy and in the newborn, the FA composition of SFA changes in a way to counteract changes in MMP induced by reduced and increased HUFA, respectively.  相似文献   

11.
Mitochondrial uncoupling protein 1 (UCP1) is the crucial mechanistic component of heat production in classical brown fat and the newly identified beige or brite fat. Thermogenesis inevitably comes at a high energetic cost and brown fat, ultimately, is an energy-wasting organ. A constrained strategy that minimizes brown fat activity unless obligate will have been favored during natural selection to safeguard metabolic thriftiness. Accordingly, UCP1 is constitutively inhibited and is inherently not leaky without activation. It follows that increasing brown adipocyte number or UCP1 abundance genetically or pharmacologically does not lead to an automatic increase in thermogenesis or subsequent metabolic consequences in the absence of a plausible route of concomitant activation. Despite its apparent obviousness, this tenet is frequently ignored. Consequently, incorrect conclusions are often drawn from increased BAT or brite/beige depot mass, e.g., predicting or causally linking beneficial metabolic effects. Here, we highlight the inherently inactive nature of UCP1, with a particular emphasis on the molecular brakes and releases of UCP1 activation under physiological conditions. These controls of UCP1 activity represent potential targets of therapeutic interventions to unlock constraints and efficiently harness the energy-expending potential of brown fat to prevent and treat obesity and associated metabolic disorders.  相似文献   

12.
Declarations of the total content of trans fatty acids (FA) and saturated FA (SFA) are mandatory on food labels in the US and Canada. Gas chromatography (GC) has been the method of choice for the determination of FA composition. However, GC is time consuming and requires conversion of fats and oils to their FA methyl esters. In the present study, a recently published Fourier transform near-infrared (FT-NIR) spectroscopic procedure was applied to the rapid (<5 min) determination of total SFA, monounsaturated FA (MUFA), polyunsaturated FA (PUFA), and trans FA contents of 30 commercially available edible fats and oils. Good agreement was obtained between the GC and FT-NIR methods for the determination of total SFA, MUFA, and PUFA contents. Differences between the two methods were apparent for the determination of trans fat at trans fat levels <2 % of total fat. The analytical determinations of total SFA, MUFA, and PUFA contents for many of the oils examined differed from the respective values declared on the product labels. Our findings demonstrate that the FT-NIR procedure serves as a suitable alternative method for the rapid determination of total SFA, MUFA, PUFA and trans FA contents of neat vegetable oils.  相似文献   

13.
Plasma cholesterol levels were determined in calves, lambs, and pigs at intervals from birth until after weaning. In each case the levels were low at birth, became elevated during the suckling period, and decreased as the animals began to eat solid feed. Results with calves fed skim milk indicated that milk lipids were largely responsible for the post-partum elevation of plasma cholesterol levels. Studies with early and late weaned pigs also indicated that the elevation of plasma cholesterol in suckling animals was related to diet rather than age. Sex and breed had no apparent effect on plasma cholesterol levels in these experiments. A limited number of observations in colts indicated that plasma cholesterol levels decreased between 2 and 7 months.  相似文献   

14.
Adria Rothman Sherman 《Lipids》1979,14(11):888-892
Serum lipids were studied in iron-deficient and control rats during suckling and after weaning at 21, 30, and 60 days of age. Diets providing 5 or 307 ppm iron were fed to dams and their offspring during gestation, lactation, and after weaning. Rats on the deficient diet throughout the experimental period developed a hyperlipidemia characterized by elevated triglycerides, cholesterol, and phospholipids which was present at 21, 30, and 60 days. Control pups weaned to the deficient diet developed anemia at 30 days of age and hypertriglyceridemia at 60 days of age. Repletion of deficient rats with iron after weaning caused a rapid decline in serum lipid levels after only 9 days on the control diet. The hyperlipidemia of iron deficiency thus appears to be reversible with iron supplementation. The time required to develop hypertriglyceridemia in iron deficiency is longer postweaning than during suckling.  相似文献   

15.
The brain contains high levels of the long-chain n−3 FA DHA(22∶6n−3), mainly in the gray matter and synaptosomes. Adequate intake of DHA is crucial for optimal nervous system function, particularly in infants. Supplementation of infant formulas with DHA at levels similar to human breast milk is recommended for biochemical and functional benefits to neonates. We generated transgenic mice that produce elevated levels of n−3 PUFA in their milk by expressing the Caenorhabditis elegans n−3 FA desaturase under the control of a lactation-induced goat beta-casein promoter. To examine the postnatal effects of consuming the n−3-enriched milk, we compared the growth and brain and plasma FA composition of mouse pups raised on milk from transgenic dams with those observed for pups raised on milk from nontransgenic dams. A significant decrease in arachidonic acid (ARA, 20∶4n−6) and concomitant increases in n−3 PUFA were observed in the phospholipid fraction of transgenic mouse milk. The n−6∶n−3 FA ratios were 4.7 and 34.5 for the transgenic and control milk phospholipid fractions, respectively. DHA and DPA (22∶5n−6) comprised 15.1% and 2.8% of brain FA from weanling mice nursed on transgenic dams, as compared with 6.9% and 9.2% for weanling mice nursed on control dams, respectively. This transgenic mouse model offers a unique approach to disassociate the effects and fetal programming resulting from a high n−6∶n−3 FA ratio gestational environment from the postnatal nutritional effects of providing milk with differing n−6∶n−3 FA ratios.  相似文献   

16.
Trushenski JT  Lewis HA  Kohler CC 《Lipids》2008,43(7):643-653
Fatty acid (FA) profile of fish tissue mirrors dietary FA profile and changes in a time-dependent manner following a change in dietary FA composition. To determine whether FA profile change varies among lipid classes, we evaluated the FA composition of fillet cholesteryl esters (CE), phospholipids (PL), and triacylglycerols (TAG) of sunshine bass (SB, Morone chrysops x M. saxatilis) raised on feeds containing fish oil or 50:50 blend of fish oil and coconut, grapeseed, linseed, or poultry oil, with or without implementation of a finishing period (100% FO feed) prior to harvest. Each lipid class was associated with a generalized FA signature, irrespective of nutritional history: fillet PL was comprised largely of saturated FA (SFA), long-chain polyunsaturated FA (LC-PUFA), and total n-3 FA; fillet TAG was higher in MC-PUFA and total n-6 FA; and fillet CE was highest in monounsaturated FA (MUFA). Neutral lipids reflected dietary composition in a near-direct fashion; conversely, PL showed evidence of selectivity for MC- and LC-PUFA. Shorter-chain SFA were not strongly reflected within any lipid fraction, even when dietary availability was high, suggesting catabolism of these FA. FA metabolism in SB is apparently characterized by a division between saturated and unsaturated FA, whereby LC-PUFA are preferentially incorporated into tissues and SFA are preferentially oxidized for energy production. We demonstrated provision of SFA in grow-out feeds for SB, instead MC-PUFA which compete for tissue deposition, meets energy demands and allows for maximum inclusion of LC-PUFA within fillet lipids.  相似文献   

17.
The milk lipids from the dams of two strains of rabbits differing in their cholesterolaemic response, one hyperresponsive and one hyporesponsive to dietary cholesterol, were analyzed. The hyperresponsive dams had significantly higher (P<0.05) cholesterol and phospholipid concentrations than the hyporesponsive dams but similar triglyceride concentrations. Cross fostering experiments with hyporesponsive and hyperresponsive offspring were carried out. Offspring from hyporesponsive parents suckled on hyper-responsive dams resembled hyperresponsive offspring in their cholesterolaemic response. However, offspring from hyper-responsive parents responded as hyper-responsive whether they were raised on their natural dams or on foster hyporesponsive dams. We conclude that the trait for hyperresponder characteristics is un-influenced by rabbit milk, while the trait for hyporesponder characteristics is dependent upon the cholesterol and phospholipid concentrations in milk.  相似文献   

18.
Plasma cholesterol levels in kittens and puppies were low at birth, rose during the suckling period, and then decreased at about the time of weaning. The increase during the suckling period was much greater in puppies than in kittens. No significant differences in plasma cholesterol levels were observed in puppies fed two different types of diet, horse meat or dog chow, after weaning. Guinea pigs had lower plasma cholesterols than either kittens or puppies. The level was highest on the first day after birth, decreased during the next 3 wk, and then remained fairly constant after the animals were weaned.  相似文献   

19.
Individual FA have diverse biological effects, some of which affect the risk of cardiovascular disease (CVD). In the context of food-based dietary guidance designed to reduce CVD risk, fat and FA recommendations focus on reducing saturated FA (SFA) and trans FA (TFA), and ensuring an adequate intake of unsaturated FA. Because stearic acid shares many physical properties with the other long-chain SFA but has different physiological effects, it is being evaluated as a substitute for TFA in food manufacturing. For stearic acid to become the primary replacement for TFA, it is essential that its physical properties and biological effects be well understood.  相似文献   

20.
This is a comprehensive study of fatty acid (FA) profiles in milk from bovine, caprine, ovine, asine, and equine species. Milks from these species are universally common as constituents in a variety of different food and dairy products. We have obtained structural information on FAs, and discussed their correlation to health effects. The extracted fat from all species were derivatized to FA methyl esters for analysis by GC‐MS. Large differences in the lipid content and FA composition between ruminants and non‐ruminants were observed. Ovine milk showed the highest lipid content of all the animals tested, both ruminants and non‐ruminants. Among the ruminants, bovine milk was richer in saturated FAs (69.7%) than ovine‐ and caprine milk (57.5 and 59.9%, respectively). Ovine milk contained the highest amounts of monounsaturated FAs (39.1%) and also odd‐ and branched‐chain FAs (5.5%). Milk from the monogastric animals, mares and donkeys, were highest in polyunsaturated FAs with a content of 19.3 and 14.2%, respectively. The assumed health negative trans FAs were analyzed to be highest in the ruminant milk (0.7–1.0%). Milk from these species contained also the highest amount of the health beneficial CLA (0.4–0.7%). Practical applications: This is a comprehensive study of milk from five species analyzed under identical conditions. The different fatty acids and their derivatives are increasingly important components because of the contradictory reports on positive and negative effects on human health. New information on the composition of milk from different species is of great importance. The results may give valuable information to producers and nutritional advisors on the consumption of milk and milk products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号