首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了研究高强不锈钢绞线网增强工程水泥基复合材料(Engineered cementitious composites,EEC)的受拉性能,考虑高强不锈钢绞线配筋率、ECC抗拉强度、高强不锈钢绞线网增强ECC试件宽度3个影响因素,对设计的27个高强不锈钢绞线网增强ECC试件进行了单轴拉伸试验。试验结果表明,高强不锈钢绞线网增强ECC受拉试件的开裂应力和极限应力随着钢绞线配筋率、ECC抗拉强度的增大而增大;增大试件宽度对试件的开裂应力和极限应力几乎无影响。基于试验结果,提出并建立了高强不锈钢绞线网增强ECC受拉本构模型,推导了开裂应力和极限应力计算公式。经验证,计算结果与试验结果吻合良好,说明所建立的受拉本构模型可准确描述高强不锈钢绞线网增强ECC的受拉应力-应变关系。   相似文献   

2.
利用国产基体原材料制备了具有较高极限拉伸性能的高延性纤维增强水泥基复合材料(ECC),研究了粉煤灰和胶粉对ECC直接拉伸性能的影响.试验结果表明:采用合理的配合比及测试方法,制备的ECC试件具有应变硬化及多缝开裂特征;粉煤灰掺量为80%时,7d、28 d极限拉应变分别达到3.77%和2.86%,28 d抗压强度为25.4 MPa;掺入10%胶粉,7d、28 d极限拉应变分别达到3.91%和2.37%.在满足强度要求的前提下,适当增大粉煤灰和胶粉掺量有利于提高ECC的延性.  相似文献   

3.
李可  赵大鹏  刘伟康  范家俊 《工程力学》2022,39(12):120-129
通过单轴拉伸试验,讨论了PVA纤维体积掺入量和水胶比对工程用水泥基复合材料(ECC)受拉力学性能参数(开裂应变、开裂应力、峰值应变、峰值应力、极限应变以及应力-应变关系曲线)的影响规律。基于此,从损伤力学的角度讨论了ECC在单轴受拉过程的开裂前阶段、应变硬化阶段以及应变软化阶段的损伤演化机制。进而,基于ECC受拉损伤演化机制提出ECC受拉损伤本构模型,并给出模型相关参数的计算方法,分析表明:该文提出损伤模型得到的ECC受拉损伤演化曲线能更为合理的描述ECC的损伤演化全过程。最后,该文损伤模型计算的ECC受拉应力-应变关系曲线和试验曲线对比结果表明,所提出的模型能够合理的描述ECC受拉非线性应力-应变关系特征,且具有良好的精度。  相似文献   

4.
高性能PVA纤维增强水泥基复合材料单轴受拉特性   总被引:3,自引:0,他引:3  
李艳  刘泽军  梁兴文 《工程力学》2013,30(1):322-330
高韧性PVA纤维增强水泥基复合材料具有很高的能量吸收能力,但强度通常较低,采用我国地方材料资源和工业废料,可制备出高强度同时极限变形量满足实际工程要求的高性能PVA纤维增强水泥基复合材料(HPFRCC),以应用于高层抗震建筑结构的关键部位。通过单轴受拉强度和变形特性试验,研究PVA纤维体积率、粉煤灰掺量、硅灰掺量、水胶比及砂胶比对HPFRCC抗拉性能的影响,研究结果表明:随着PVA纤维体积掺量的增加,HPFRCC的抗拉强度与极限拉应变增大;大掺量粉煤灰替代水泥及增大水胶比可降低HPFRCC的抗拉强度,但明显改善其受拉应变硬化特性;HPFRCC中掺入适量硅灰及细砂可提高其抗拉强度,但极限拉应变降低,尤其当砂胶比较大时,HPFRCC的受拉应变硬化现象不明显;基于细观力学模型,分析了各因素对HPFRCC拉伸应变硬化特性影响的原因,研究结果可为今后HPFRCC的实际工程应用提供基础依据。  相似文献   

5.
于泳  金祖权  邵爽爽  李哲 《材料导报》2021,35(14):14052-14057
针对蒸养过程中水泥基材料抗拉强度小、位移和变形导致难以直接测量等问题,本工作提出采用直接拉伸试验结合DIC技术的方法研究蒸养过程中水泥基材料的抗拉性能,主要考虑了两种养护制度(蒸汽养护、干养护)和两种辅助胶凝材料(矿粉、粉煤灰).同时采用滴定的方法测量了蒸养过程中氢氧化钙(CH)的含量变化.研究结果表明,通过本工作提出的试验方法可以测定早龄期蒸养水泥基材料的抗拉应力-应变曲线;蒸养过程中水泥基材料抗拉强度ft的发展明显滞后于CH的生成,在本工作的辅助胶凝材料掺量和养护条件下,lgft与CH的浓度呈线性关系;粉煤灰和矿粉掺入均会降低胶凝材料的水化速度和抑制净浆抗拉强度的发展,其中粉煤灰的抑制效果更明显;水蒸气对掺加辅助胶凝材料的净浆水化速度影响较大,在蒸养构件生产中应该考虑这一点.  相似文献   

6.
为了判断纤维增强复合材料(fiber reinforced polymer,FRP)配筋混凝土路面结构的力学性能差异,确定其应力关系,需要进行FRP配筋混凝土路面结构力学性能试验分析。以某混凝土路面的核心试件为例,首先使用特征分析法分析FRP配筋混凝土路面结构试件特征,其次使用对比法判断混凝土试件的承载力,最后使用变形约束法确定试件的力学性能,得出FRP配筋混凝土路面结构的力学性能关系。力学性能试验分析结果表明,随着FRP层数的增加,混凝土的抗压强度、极限应变、初始刚度均受到不同程度的影响,证明FRP配筋混凝土路面结构符合应力-应变力学性能关系。  相似文献   

7.
为将新型复合材料“高强不锈钢绞线网/ECC约束素混凝土”用于实际工程结构,基于高强不锈钢绞线网/ECC约束高强混凝土(简称HSME约束高强混凝土)复合材料轴心受压试验结果,分析ECC强度、核心混凝土强度以及横向钢绞线体积配网率等对其受压性能的影响规律。试验结果表明:HSME能够有效约束核心混凝土轴心受压,破坏模式具有明显的延性性能,根据试验数据绘出HSME约束高强混凝土复合材料受压应力-应变曲线,可以分为三个阶段:弹性阶段、弹塑性阶段和下降段。根据各阶段曲线的数学特征,建立HSME约束高强混凝土复合材料受压本构关系的全过程模型表达式。引入ECC特征值和横向钢绞线特征值,对本构模型的各参数进行分析,提出HSME约束高强混凝土复合材料的开裂压应变、峰值应力、峰值压应变和极限压应变等参数的表达式。将各参数代入所建立的受压本构关系绘出其应力-应变曲线,模型结果与试验所得应力-应变曲线吻合良好,开裂压应变与极限压应变的计算值与试验值对比范围分别为0.949~1.068和0.938~1.039。表明所提出的受压本构模型能够较好地反映HSME约束高强混凝土复合材料的应力-应变关系。  相似文献   

8.
为探究超高韧性水泥基复合材料(UHTCC)的动态本构关系及纤维体积掺量对聚乙烯醇纤维增强水泥基复合材料(PVAFRCC)动态力学性能的影响,基于Φ80 mm霍普金森压杆(SHPB)装置分别对不同纤维体积分数(Ovol%、0.5vol%、1vol%、1.5vol%、2vol%)的PVAFRCC试件进行冲击压缩试验,得到各类型材料在不同应变率下的应力-应变曲线。结果表明:在约110~270 s~(-1)的应变率范围内,与纤维掺量0vol%的基体(PVAFRCC-0)相比PVA纤维的掺入对动态强度增强因子(μ_(DIF))、冲击韧性和抗破碎能力有明显提高作用,并随纤维掺量的增加而进一步增强;掺2vol%PVA纤维UHTCC(即PVAFRCC-2)试件的μ_(DIF)和冲击韧性与基体相比分别提高了约33%~37%和27%~33%,其破碎产物的平均粒径是基体破碎产物的5.9~6.8倍。基于Weibull分布理论提出了适用于掺2vol%PVA纤维UHTCC试件的动态压缩本构模型。  相似文献   

9.
通过有限元软件ABAQUS对纤维增强聚合物基复合材料(FRP)增强重组竹梁受弯性能进行了分析,有限元模拟结果与试验结果相一致,两者荷载-位移曲线相吻合,跨中截面应变发展过程基本一致,70 kN荷载时,截面应变误差在13.96%内,承载力预测具有很好的精度,预测最大误差为9.04%,FRP的增强使竹梁截面的应力重新分布,受压区竹材得到更加充分的利用;进一步参数化分析了截面宽高比、FRP层数、FRP种类对FRP增强重组竹梁受弯性能的影响。发现:FRP层数的增加对重组竹梁极限承载力和截面刚度提升作用显著;相同层数、相同种类FRP增强重组竹梁时,截面高度减小,极限承载力和截面刚度提高幅度增加;相同截面宽高比和FRP层数时,碳纤维增强聚合物基复合材料(CFRP)增强效果优于玄武岩纤维增强聚合物基复合材料(BFRP)增强效果。   相似文献   

10.
对C30、C40、C50三种强度等级的素混凝土及1~4层玄武岩纤维(BFRP)包裹试件进行了SHPB冲击试验,分析了试件在冲击作用下的破坏现象,研究了应变率和约束比对应力应变曲线的影响,得到了BFRP约束混凝土的动态强度拟合公式。试验结果表明:BFRP包裹试件的抗打击能力和变形能力较未包裹试件有较大提高,具有良好的吸能能力;随着包裹层数的增加和应变率提高,试件抗冲击强度和变形能力提高明显,应力应变曲线下降段的下降速度开始变缓,说明纤维在试件中所起的作用增强。  相似文献   

11.
为了探究粉煤灰细度对超高韧性水泥基复合材料(ECC)性能的影响,设计对比三组由不同细度粉煤灰制作的ECC试件的抗拉及抗压试验性能,并进行了灰色关联度分析。结果表明:ECC的拉伸应变与粉煤灰细度之间不呈简单的线性关系;对于ECC的抗压强度,其主导因素并非是粉煤灰的细度,而是粉煤灰的活性。在特定条件下,通过改变粉煤灰的细度,可以在不影响基体强度的情况下改善ECC的延性。  相似文献   

12.
在碱激发作用下,以矿粉为主要原材料,粉煤灰为辅助材料,共同制备聚乙烯(PE)纤维增强高延性碱矿渣复合材料。通过轴向拉、压实验,研究不同养护龄期(1天、3天、7天、28天、56天、120天)下材料的拉压性能,并借助数字图像技术(DIC)对裂缝进行了表征。结果表明:高延性碱矿渣表现出较好的延性,具有早强特征。7天强度值可达极限强度的84%以上(极限拉压强度分别为5.05 MPa、91.24 MPa),拉伸应变可达5.74%,多缝开裂基本饱和;28天后拉压性能趋于稳定(拉压强度、拉伸应变分别保持在6 MPa、100 MPa、6%);DIC数字分析云图直观地描述了裂缝的形成及发展过程,可从一定程度上对开裂破坏方向及位置进行可靠预判。   相似文献   

13.
江佳斐  隋凯 《复合材料学报》2019,36(8):1957-1967
为提升纤维增强聚合物复合材料(FRP)在加固材料中的优势和发挥效率,同时克服传统纤维网格增强砂浆的抗裂性差的缺点,将超高韧性水泥基材料(ECC)替代砂浆作为FRP网格无机黏结剂的新型复合材料已被提出,但仍缺乏相关的基础研究。本文以新型聚乙烯型ECC为基材,重点研究FRP grid/ECC加固混凝土柱的加固机制。以标准混凝土圆柱为试验对象,采用新型ECC材料为基材的FRP grid/ECC复合材料,以不同强度素混凝土、不同网格材料(玄武岩纤维增强聚合物复合材料(BFRP)与碳纤维增强聚合物复合材料(CFRP)网格)为试验变量,研究了该加固方式下对混凝土轴心受压性能的影响。试验结果表明,该加固方法可有效改善素混凝土脆性压溃破坏模式,提高峰值强度及受压延性。基于FRP grid/ECC材性特征,提出两阶段FRP grid/ECC加固机制,并基于该机制提出加固素混凝土圆柱承载力计算方法。   相似文献   

14.
对36个玄武岩纤维布增强树脂基复合材料(BFRP)约束加固的高温损伤混凝土圆柱体和15个不同高温损伤的对比试件进行了轴压试验。试验表明,BFRP侧向约束能显著改变混凝土圆柱体的破坏形态,提高混凝土圆柱体的轴压强度和变形能力。其中二层BFRP包裹的200℃、400℃、600℃和800℃高温损伤混凝土圆柱体的轴压强度分别提高了56%、82%、234%和250%,轴向变形分别提高了328%、198%、232%和136%。采用典型的纤维增强复合材料约束常温未损伤混凝土轴压强度和变形计算模型预测纤维增强复合材料约束高温损伤混凝土轴压极限强度和极限变形时存在较大的偏差。基于本文试验数据,确定了BFRP约束高温损伤混凝土极限应力和极限应变计算模型中与温度相关的参量,建议了适用于预测纤维增强复合材料约束高温损伤混凝土的极限应力计算模型和极限应变计算模型。  相似文献   

15.
Fly ash has gathered widespread attention as a potential reinforcement for aluminum matrix composites (AMCs) to enhance the properties and reduce the cost of production. Aluminum alloy AA6061 reinforced with various amounts (0, 4, 8 and 12 wt.%) of fly ash particles were prepared by compocasting method. Fly ash particles were incorporated into the semi solid aluminum melt. X-ray diffraction patterns of the prepared AMCs revealed the presence of fly ash particles without the formation of any other intermetallic compounds. The microstructures of the AMCs were analyzed using scanning electron microscopy. The AMCs were characterized with the homogeneous dispersion of fly ash particles having clear interface and good bonding to the aluminum matrix. The incorporation of fly ash particles improved the microhardness and ultimate tensile strength (UTS) of the AMCs.  相似文献   

16.
Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy and causes less CO2 emission than Portland cement. Moreover, the use of limestone powder and BFS improves the properties of fresh and hardened concrete, such as workability and durability. Engineered cementitious composites (ECC) is a class of ultra ductile fiber reinforced cementitious composites, characterized by high ductility, tight crack width control and relatively low fiber content. The limestone powder and BFS are used to produce ECC in this research. The mix proportion is designed experimentally by adjusting the amount of limestone powder and BFS, accompanied by four-point bending test and uniaxial tensile test. This study results in an ECC mix proportion with the Portland cement content as low as 15% of powder by weight. This mixture, at 28 days, exhibits a high tensile strain capacity of 3.3%, a tight crack width of 57 μm and a moderate compressive strength of 38 MPa. In order to promote a wide use of ECC, it was tried to simplify the mixing of ECC with only two matrix materials, i.e. BFS cement and limestone powder, instead of three matrix materials. By replacing Portland cement and BFS in the aforementioned ECC mixture with BFS cement, the ECC with BFS cement and limestone powder exhibits a tensile strain capacity of 3.1%, a crack width of 76 μm and a compressive strength of 40 MPa after 28 days of curing.  相似文献   

17.
This paper investigates the creep behavior of newly developed basalt fiber reinforced polymer (BFRP) tendons for prestressing application. The creep strain to time relationship, creep rate and residual strength were experimentally studied and the relevant mechanism was elaborated. Furthermore, the creep rupture stress was predicted based on statistical analysis. The results show that the creep strain to time relationship of BFRP tendons depends highly on the stress level applied. The creep rate of BFRP tendons under low levels of stress remains in low and steady values. Meanwhile, the residual strength of BFRP after 1000 h of sustained load still reaches approximately 95% of its initial tensile strength and the corresponding coefficient of variation (CV) is much less than the original CV. For prestressing application, the creep rupture stress limit for BFRP tendons can be adopted up to 52% of its tensile strength according to the reliability based analysis.  相似文献   

18.
LM13 aluminium alloy with boron carbide (0 wt.%–7.5 wt.%) and fly ash (2.5 wt.%) reinforced particulate hybrid composites were fabricated using liquid metallurgy route. Microstructure and mechanical properties viz., hardness, ultimate tensile strength and ductility were investigated. Wear behaviour of composites was tested by varying sliding distance and load. Fracture surface and worn surface of composites were examined using field emission scanning electron microscope. Microstructure of hybrid composites revealed uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt.% of boron carbide and fly ash particles. Wear test results showed that addition of particles significantly decreased the weight loss and coefficient of friction. Also cumulative weight loss decreased up to 47.2 % for 10 wt.% of hybrid composites as compared to LM13 aluminium alloy. Fracture surface of composites showed dimples with particle cracking on the surface. Worn surface of LM13 aluminium alloy showed continuous grooves due to ploughing with delamination. However, worn surface of composites showed fine grooves due to the presence of hard reinforcements on the surface. Boron carbide and fly ash reinforced LM13 aluminium hybrid composites exhibited superior mechanical properties with excellent wear resistance as compared to LM13 aluminium alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号