首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 73 毫秒
1.
聚醚砜/环氧树脂复合体系的研究   总被引:21,自引:0,他引:21  
研究了聚醚砜(PES)/环氧树脂复合体系的微面结构和热-力学性能,分析了PES在环氧树脂基体中的增韧机理,PES/环氧树脂复合体系为两相结构,分散相PES呈不规则的变形颗粒分散在环氧树脂中,加入一定量PES可较大幅度地提高环氧树脂的韧性,而不降低环氧树脂的模量和耐热性。  相似文献   

2.
环氧树脂具有优异的热性能及力学性能,但本身脆性较大。为制备低成本、高性能的环氧树脂体系,使用聚醚砜(PES)和多壁碳纳米管(MWCNT)对环氧树脂进行增韧,制备了不同PES含量的PES-环氧树脂共混物,讨论了PES含量对环氧树脂力学性能的影响;采用熔融法,并配合使用机械搅拌、高剪切分散和超声分散制备了MWCNT/PES-环氧树脂复合材料,测试了其拉伸性能及断裂韧性,用SEM观察了MWCNT在树脂中的分散状态以及拉伸试样的断口形貌。结果表明:MWCNT的加入能够提高PES-环氧树脂体系的综合力学性能,且当MWCNT含量为0.7wt%时,树脂体系的综合力学性能最好;低PES含量下,小于1.0wt%的MWCNT的加入使材料力学性能超过用20.0wt%PES改性的环氧树脂;PES与MWCNT对环氧树脂具有协同增韧作用。  相似文献   

3.
利用超临界乙醇修饰纳米Al2O3,得SCE-Al2O3,使其表面沉积活性基团;以4,4′-二氨基二苯甲烷双马来酰亚胺(BMI)为基体、3,3′-二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂、聚醚砜(PES)为增韧剂、SCE-Al2O3为改性剂,通过原位聚合法合成了SCE-Al2O3/PES-BMI-BBA-BBE复合材料。采用SEM和FTIR观察分析了SCE-Al2O3纳米粒子和PES的增韧机制。结果表明:SCE-Al2O3纳米粒子处理时间不宜过长,5min为宜;FTIR显示在3 457cm-1附近的—OH吸收峰增强,说明粒子表面沉积了活性基团—OH;PES与BMI-BBA-BBE呈现两相结构,PES树脂以"蜂窝"状均匀分散在聚合物基体BMI-BBA-BBE中,PES用量增加会使其粒子尺寸增大,适宜用量为5wt%。SCE-Al2O3/PES-BMI-BBA-BBE复合材料的耐热性能测试结果显示:PES树脂会使材料的热分解温度降低,但SCE-Al2O3会提高材料的耐热性能,4wt%SCE-Al2O3/PES-BMI-BBABBE的热分解温度为444.41℃,较基体树脂提高了20.52℃,600℃时残重率为47.64%,提高了7.09%。  相似文献   

4.
制备了新型的有机黏土/聚醚砜/环氧树脂纳米复合材料并对其微结构和增韧机理进行了研究.此纳米材料由半互穿网络结构的聚醚砜/环氧树脂基体和有序剥离形态的有机黏土组成.由于有机黏土和聚醚砜的加入大幅增加了环氧树脂的断裂韧性,并且出现了双增韧剂的协同增韧效应.增韧机理包括两个部分:一方面聚醚砜的加入形成了半互穿网络结构增加了基...  相似文献   

5.
用聚醚砜对环氧树脂进行室温和超低温的增韧研究,测试了该环氧树脂体系在室温和超低温的断裂韧性、冲击强度、弯曲性能、拉伸性能和压缩性能。实验结果表明,在室温和液氮温度下,PES均能增加环氧树脂体系的断裂韧性(KIc),但在液氮温度下,KIc的增加程度小于室温。在室温下,PES改性树脂体系的冲击强度基本不变,而在液氮温度下则明显增大。在液氮温度下,增韧体系的弯曲、压缩和拉伸性能比室温有更显著的降低。在室温,增韧体系的强度降低10%~22%,而在液氮温度下则下降15%~32%。在室温,增韧体系的模量没有明显减小,而在液氮温度下则下降了15%~32%。  相似文献   

6.
为了提高碳纤维(CFs)增强热塑性树脂聚醚砜(PES)复合材料的界面结合力,对PES进行磺化改性,得到磺酸基聚醚砜(SPES)制备的CFs上浆剂,研究了SPES上浆剂对CFs/PES复合材料界面性能的影响和上浆剂质量分数对CFs/PES复合材料的作用效果。结果表明:经过SPES上浆的纤维毛丝量降低、耐磨性提高。同时FTIR和XPS分析表明:SPES中的—SO3H基团与CFs表面微量的活性官能团发生了化学反应,提高了增强体CFs与基体树脂PES间的黏连。当上浆剂含量为1wt%时,CFs/PES复合材料的层间剪切强度(ILSS)提高最显著,比未上浆改性的CFs/PES复合材料的提高了24%。SEM照片证实在此浓度下CFs与PES结合更加紧密。动态力学热分析(DMTA)结果亦证明1wt%的SPES上浆剂提高了CFs/PES复合材料的玻璃化转变温度。  相似文献   

7.
采用非等温DSC研究了双马来酰亚胺-聚醚砜(BMI-PES)复相树脂体系的固化行为和固化动力学,根据Kissinger方程计算BMI-PES复相树脂固化的表观活化能和指前因子,利用Crane方程计算反应级数,得到反应动力学方程,进行了实验固化度与理论固化度对比验证,通过SEM研究BMI-PES复相树脂微观相结构随固化温度和时间的演化规律。树脂固化行为显示:BMI-PES复相树脂固化反应存在自催化现象,PES参与了BMI固化;随着升温速率增大,BMI-PES复相树脂固化特征温度均向高温移动,但固化热焓基本不变;随着PES添加量增多,反应速率增大,BMI-PES复相树脂固化热焓降低,而峰值固化温度无变化。固化动力学研究表明:随着PES添加量增多,BMI-PES复相树脂固化表观活化能增大,但指前因子和反应级数无变化,固化为一级反应;BMI-PES树脂在200℃固化时,反应前期固化度实验数据与理论值吻合度很高。SEM结果表明,BMI-PES树脂经180℃固化处理后产生了相反转结构。   相似文献   

8.
双马来酰亚胺改性环氧树脂固化反应行为及性能研究   总被引:1,自引:0,他引:1  
采用双马来酰亚胺(BMI)改性环氧树脂(TDE-85)/芳香胺(DAMI)固化体系。用差式扫描量热法(DSC)对树脂体系的固化反应行为与固化动力学进行了分析,考察了BMI含量对改性体系性能的影响。结果表明,随着体系中BMI比例的增加,体系固化放热峰向高温区移动,总反应热减小,固化物的耐热性和力学性能明显提高;根据Kissinger方法求得改性前后体系固化反应的表现活化能△E分别为52.46和57.72kJ/mol;根据Crane理论计算得到改性体系的固化反应级数n为0.88,固化反应过程为多级反应。  相似文献   

9.
吴唯  陈诗英  宗孟静子 《材料导报》2017,31(20):21-24, 29
本实验制备了纳米Al_2O_3/聚醚砜-环氧树脂复合材料,考察了不同纳米氧化铝和聚醚砜的用量对复合体系力学和介电性能的影响,并对其热稳定性能进行了研究。结果表明:当添加1phr纳米氧化铝(Nano-Al_2O_3)和5phr聚醚砜(PES)时,三元复合材料EP/5PES/1Al_2O_3的拉伸强度提高到58 MPa,断裂伸长率达到13%,冲击强度达到16.2kJ/m~2,相比纯环氧树脂分别提高了61.1%、20.3%和8.0%。而且在100Hz的室温测试条件下,EP/5PES/1Al_2O_3材料的介电常数和介电损耗分别达到7.6和0.016,较纯环氧树脂均有一定幅度的增加。热重分析(TG)结果表明,EP/5PES/1Al_2O_3复合材料的初始分解温度为358℃,比纯环氧树脂提高了14℃,说明热稳定性有较大幅度的提高。  相似文献   

10.
以苯乙胺(PEA)、柔性端氨基聚醚(BATPE)和双酚A环氧树脂(DGEBA)为原料,制备了无微相分离结构的无定形交联热固性树脂。在不改变柔性聚醚链段含量的情况下,测试了3种不同聚乙二醇(PEG)相对分子质量(珚MPE)的PEA/BATPE-DGEBA环氧树脂固化产物的应力-应变曲线、动态力学温度谱和冲击断面形貌。结果表明,在环氧树脂交联网络中引入双端与DGEBA键接的PEG链段能避免微相分离结构的生成,提高DGEBA链段的应变松弛速率。PEA/BATPEDGEBA交联聚合物的玻璃化转变温度和室温的刚度和拉伸强度随珚MPE增加而降低。当珚MPE=600时,PEA/BATPE-DGEBA交联聚合物冲击强度相对于PEA-DGEBA线型聚合物提高了154.32%,在应力-应变曲线中出现屈服点,表现为典型的韧性断裂。  相似文献   

11.
采用3-缩水甘油醚氧基丙基三甲氧基硅烷(KH-560)修饰纳米二氧化硅(nano-SiO2)获得改性纳米二氧化硅(KH-SiO2)。以酚醛环氧树脂(F51)和双马来酰亚胺(BMI)作为基体,添加4%(质量分数,下同)聚醚砜(PES)和不同含量(0.5%~2.5%)的KH-SiO2,制备KH-SiO2/PES/BMI-F51多相复合材料。红外光谱(FT-IR)、扫描电镜(SEM)和透射电镜结果表明:纳米SiO2表面修饰效果良好,纳米粒子团聚倾向减弱,粒径减小,比表面积增大。介电性能测试结果表明:随着KH-SiO2掺杂量的增加,材料的介电常数先降低后升高,介电损耗没有明显变化,体积电阻率和击穿强度先升高后降低。当KH-SiO2掺杂量为1.5%时,10Hz下介电常数和介电损耗角正切分别为4.55和0.0029,体积电阻率和击穿强度分别为1.74×10^14Ω·m和29.11kV/mm,比树脂基体提高了68.9%和35.9%。  相似文献   

12.
碳纳米管/碳纤维/环氧树脂复合材料研究   总被引:1,自引:0,他引:1  
制备了碳纳米管(CNTs)/碳纤维(CF)/环氧树脂(EP)三元复合材料。研究了CNTs含量对复合材料层间剪切强度、弯曲强度和弯曲模量的影响,并采用场发射扫描电镜分析了CNTs在基体树脂中的分散情况。结果表明:复合材料性能的变化源自于CNTs在基体树脂中的分散状态。当CNTs含量为0.2%(wt,下同)时,复合材料剪切强度和弯曲强度达到最大值,分别为99.2MPa和1811.4MPa,但其弯曲模量下降了8.7GPa。当CNTs添加量达到1%时,其弯曲模量达到135.9GPa,较未加入CNTs时提高了11.1%,层间剪切强度和弯曲强度分别降低了5.5MPa和359.5MPa。  相似文献   

13.
采用双酚A型环氧树脂(DGEBA)、改性咪唑(MIM)及改性脂肪胺(MAA)研制快速固化树脂体系。分别利用DSC和流变仪测试了树脂体系的固化特性与流变行为,优选了树脂配方。采用真空辅助树脂灌注工艺(VARIM)制备了快速成型的碳纤维/环氧复合材料层板,考察了层板的成型质量和力学性能,并与常规固化的层板性能进行了对比。结果表明:采用优选的树脂配方,120 ℃下树脂在5 min内固化度达95%,碳纤维/环氧复合材料层板成型固化时间可控制在13 min以内,固化度达95%以上,并且没有明显缺陷;与常规固化相比(固化时间大于2 h),快速固化碳纤维/环氧复合材料层板的弯曲性能和耐热性能降低幅度较小。  相似文献   

14.
对环氧树脂/纳米SiO2复合材料的低温力学性能进行了研究.在环氧树脂中加入SiO2形成复合材料,并采用对纳米颗粒表面进行硅烷偶联处理的方法实现了SiO2纳米粒子在树脂基体中的均匀分散.在液氮下对一部分复合材料进行冷冻,然后通过电子万能实验机和冲击实验机测试其低温力学性能,并与未冷冻的复合材料的室温力学性能进行比较.结果表明,复合材料低温下的拉伸强度比室温下的高,但冲击强度和断裂伸长率有所下降.  相似文献   

15.
研究了碳纳米管管径、种类、含量以及偶联-三辊研磨-超声处理等工艺条件对碳纳米管/环氧树脂复合材料拉伸强度和电性能的影响。研究结果表明:三辊研磨-超声联用是均匀分散碳纳米管简单而有效的方法。较低的碳纳米管添加量(0.8%~4%)能大幅度提高环氧树脂的剪切强度和导电性能,添加量为3%时,复合材料的综合性能最优,即剪切强度提高了55.19%,表面/体积电阻率下降了8~10个数量级。  相似文献   

16.
采用溶胶-凝胶法(Sol-gel)分别制备Al2O3和SiO2,同时以KH560为架桥剂制得SiO2包覆Al2O3(KH560-Al2O3@SiO2)的增强体。以双马来酰亚胺树脂和酚醛环氧树脂(MBMI-EPN)为基体、4’4-二氨基二苯甲烷(DDM)为固化剂,采用原位聚合法制备了KH560-Al2O3@SiO2/MBMI-EPN复合材料;表征KH560-Al2O3@SiO2的微观结构及该增强体对复合材料性能的影响。结果表明:Al2O3@SiO2粒子微观结构清晰,核壳结构完整,内核为短纤维状Al2O3,外壳为无定形SiO2,二者通过化学键方式相连;Al2O3@SiO2表面成功接枝上KH560基团,粒子堆积现象减弱。KH560-Al2O3@SiO2/MBMI-EPN复合材料的微观形貌显示:KH560-Al2O3@SiO2在MBMI-EPN基体中形成多相结构、分散性较好、界面作用稳定且断面形貌呈鱼鳞状,并未发现Al2O3@SiO2粒子团聚体,整体结构完整。当KH560-Al2O3@SiO2含量为1.5wt%时,复合材料的弯曲强度与冲击强度分别为126 MPa和14.7 kJ/m;,比树脂基体分别提高了21.2%和27.8%;材料的热分解温度为392.3℃,比树脂基体提高了14.5℃,力学性能和耐热性得到明显改善。  相似文献   

17.
分别采用日本东丽T800H和国产T800碳纤维作为增强体,采用热压罐工艺制备双马来酰亚胺树脂基复合材料。研究了2种碳纤维的表面物理和化学状态,复合材料的微观界面性能及力学性能。结果表明:国产T800碳纤维表面沟槽分布较多,表面粗糙度较高,有利于与树脂基体形成更好的物理结合作用。同时,国产T800碳纤维表面具有较多的含氧官能团,有利于与基体树脂形成更好的化学结合作用。因此,国产T800碳纤维的界面剪切强度较T800H碳纤维高约27%。国产T800/HT-280复合材料的力学性能均普遍高于T800H/HT-280复合材料,其中,90°拉伸强度高约25%,面内剪切强度、弯曲强度高约12%,层间剪切强度高约7%。   相似文献   

18.
对掺杂聚苯胺(PAN)的导电性能、结构及其加入量对镍粉/环氧树脂复合体系的分散和机械性能进行研究。十二烷基苯磺酸比盐酸掺杂的PAN导电性更优良归因于其对PAN链更大的离域作用。由于互穿网络的形成,PAN的加入提高了镍粉在环氧树脂中的分散均匀性;同时提高了复合材料的机械性能  相似文献   

19.
氰酸酯/双马来酰亚胺/环氧树脂三元共聚物及性能研究   总被引:2,自引:0,他引:2  
采用双马来酰亚胺和环氧树脂与氰酸酯共聚对氰酸酯树脂进行改性,用FTIR跟踪了其固化过程。性能测试表明,当BCE:BMI:EP为5:2:3时,其固化物的冲击强度达到了12.2kJ·cm^-2,韧性有较大的提高;改性树脂的耐热性随着EP含量的增加而下降,当EP含量为30%时,Tg为233.7℃;改性后的氰酸酯树脂在1MHz频率下的介电常数和介电损耗角正切都比纯CE的有所增加,但上涨的幅度较小,仍具有优异的介电性能;DMA分析表明,在瓦温度时,损耗因子和损耗模量达到最大值,其中,tanδmax为0.359。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号