首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
对复合材料与金属经缝合连接形成的夹层结构板的树脂传递模塑成型(RTM)工艺进行了充模模拟研究。首先通过实验和数值计算的方法,分别获得缝合夹层结构织物和芯层孔洞的渗透率;随后,建立能够反映缝孔内流动情况的二维和三维简化模型,进行RTM充模仿真,讨论不同工艺参数对成型流动的影响;最后通过成型实验验证工艺的可行性。缝线与孔洞直径之比为0.3~0.8时,孔洞渗透率随缝线直径的增大而减小,预制体织物渗透率与孔洞渗透率相差两个数量级;缝孔内容易产生缺陷,没有缺陷的区域随着注射压力的增加、孔洞密度和芯层厚度的减小而增大,在芯层表面沿每排孔洞单向开槽能够改善树脂在孔洞内的浸润;线注射时,树脂整体流动情况优于点注射,而点注射时,将进胶口设置在一角,能够减少表面干斑。  相似文献   

2.
树脂传递模塑成型工艺(RTM)中最重要的变形模式之一是厚度方向压缩。厚度方向压缩减小了织物预成型体的厚度,使织物预成型体局部结构形式发生改变从而引起嵌套效应。嵌套效应不仅会减少织物预成型体的厚度,增加纤维的体积分数并改变孔隙率,而且相邻织物层嵌套效应具有一定的空间分散性,从而使得织物预成型体渗透率具有变异性。本文针对低黏度树脂设计了一种实验装置用以测量局部渗透率的空间分散性,随后建立了随机嵌套单胞模型,利用ANSYS/CFX有限元软件实现了单胞填充浸润的数值模拟,通过流量分析获得局部渗透率,并研究了渗透率的统计分布。通过实验结果与数值模拟结果相对比,验证数值模拟结果的可靠性。最后,基于渗透率的统计分布建立了随机渗透率场,并进行填充浸润的数值模拟,通过与传统恒定渗透率的方法进行比较,证明该方法具有更高的先进性。研究结果可以对未来RTM工艺的稳健性优化提供依据。   相似文献   

3.
高性能复合材料的树脂传递模塑技术   总被引:1,自引:0,他引:1  
从成型原理及特性、预成型加工、高性能树脂、应用及展望等五个方面,对用于高性能复合材料的树脂传递模塑(RTM)技术进行了全面的评述。  相似文献   

4.
对用于RTM工艺的6421双马来酰亚胺(BMI)树脂体系的反应流变特性进行了研究,并根据流变特性确定RTM工艺的两个主要参数:模具温度110-140摄氏度,注射压力小于0.5MPa,结果表明,按此工艺条件可顺利成型先进RTM复合材料,且复合材料的表面质量良好,孔隙率低,达到先进复合材料的性能要求,同时对RTM成型的编织复合材料的力学性能进行了初步的表征。  相似文献   

5.
树脂传递模塑—复合材料成型新工艺   总被引:8,自引:1,他引:7  
树脂传递模塑是一种新型的树脂基复合材料成型方法,具有许多独特的优点,近年来发展迅速。本文全面综述了该方法的工艺过程及研究应用概况,介绍了今后进一步发展的方向。  相似文献   

6.
树脂传递模塑-复合材料成型新工艺   总被引:3,自引:0,他引:3  
树脂传递模塑是一种新型的树脂基复合材料成型方法 ,具有许多独特的优点 ,近年来发展迅速。本文全面综述了该方法的工艺过程及研究应用概况 ,介绍了今后进一步发展的方向。  相似文献   

7.
有效监测树脂传递模塑成型(RTM)的树脂注模过程对于生产大型共固化复合材料结构十分必要.本文重点讨论利用光栅传感器监测注模过程的树脂流动问题.本文在复合材料层的不同位置布置了1个温度传感器用来监测温度,2个应变传感器用来监测树脂流动前沿到达时间,试验结果表明50 min和115 min时树脂流动前沿分别到达No.1和No.2应变传感器,166 min时完成注模,此时监测温度为最低的24.59℃.光栅传感器完全可实现树脂传递模塑注模过程的监测.  相似文献   

8.
肖昌伟  李文晓 《材料导报》2022,(23):244-250
复合材料制造缺陷严重影响制品的力学性能,通过对缺陷形成规律的探究,可以有效降低缺陷形成,提高制品力学性能。孔隙在各类工艺中有着较高的形成概率,在树脂传递模塑成型(RTM)工艺中更是如此,孔隙也因此成为被研究最多的制造缺陷。本文从试验的角度介绍了RTM工艺中形成的孔隙的特征以及孔隙在线监测法、密度法、超声波法、显微镜法和显微CT法等孔隙表征手段,描述了RTM工艺孔隙的形成机理,并综述了充模过程中孔隙形成过程的数值模拟研究与应用现状,最后展望了RTM工艺复合材料孔隙预测的发展方向。  相似文献   

9.
新型树脂传递模塑技术   总被引:8,自引:0,他引:8  
概述了传统树脂传递模塑(RTM)及在其基础上发展起来的新型RTM工艺,包括真空辅助树脂传递模塑(VARTM)、Seemann复合材料树脂浸渍模塑成型工艺(SCRIMP)和树脂膜渗透成型工艺(RFI)的成型原理、优点,并指出目前存在的缺点及解决方法.  相似文献   

10.
复合材料固化过程对于生产高质量复合材料部件十分必要。文中利用光栅传感器监测树脂传递模塑(RTM)复合材料层板制造过程中内应变及温度,根据复合材料内应变/温度关系曲线的突变点,获得复合材料的材料转变点(凝胶点、玻璃化转变温度)信息。在复合材料降温阶段,利用光栅监测的应变/温度值计算RTM成型复合材料的内层和外层热膨胀系数。监测结果与传统检测方法相比十分一致。  相似文献   

11.
针对编织类纤维增强体的纤维束之间与纤维束内孔隙的双尺度特点,建立了平纹织物的细观结构模型,并推导了汇函数的数学表达式。建立了局部细观流动特征的非饱和流动控制方程,利用有限元/控制体积方法求解,得到了局部饱和度分布。与实验进行比较,吻合较好。   相似文献   

12.
It is a very important phase in resin transfer molding (RTM) process that resin is cured. The result of the curing process determines the quality of a part, including mechanical properties, lifecycle of the part under high temperature and chemical properties. Therefore, it is very meaningful to discuss the curing process. In our work, the code is prepared based on unstructured mesh using divergence theorem. A case is used to verify properness of the code and the results are in good agreement with the published experiment data. In the paper, some factors of materials and numerical calculation, e.g., time step, reaction heat, the whole heat conductivity of fiber and resin and fiber initial temperature, which affect result of simulation, are emphatically investigated and carefully revealed. The conclusion shows that time step, the reaction heat and heat conductivity have an important effect on the curing process, while fiber initial temperature has very little impact. These are helpful to understand and adopt the curing process in order to produce good products.  相似文献   

13.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

14.
We studied the mechanism of volatile-induced surface porosity formation during the resin transfer molding (RTM) of aerospace composites using a blended benzoxazine/epoxy resin, and identified reduction strategies based on material and processing parameters. First, the influence of viscosity and pressure on resin volatilization were determined. Then, in situ data was collected during molding using a lab-scale RTM system for different cure cycles and catalyst concentrations. Finally, the surface quality of molded samples was evaluated. The results show that surface porosity occurs when cure shrinkage causes a sufficient decrease in cavity pressure prior to resin vitrification. The combination of thermal gradients and rapid gelation can generate large spatial variations in viscosity, rendering the coldest regions of a mold susceptible to porosity formation. However, material and cure cycle modifications can alter the resin cure kinetics, making it possible to delay the pressure drop until higher viscosities are attained to minimize porosity formation.  相似文献   

15.
The present study investigated a numerical simulation of molding-defect formation during resin transfer molding using boundary element method and line dynamics. The proposed method enables to simulate small molding defects by increasing the node for required position during time evolution; thereby, the method computes high-resolution flow front without being affected by the initial mesh geometry. The method was applied to the radial injection RTM with single inlet, and it was confirmed by comparison with theoretical value based on Darcy’s law that the flow advancement was computed with high accuracy. In addition, the method was also applied to the flow advancement for inclusion problem with cylinder, and four-point injection problem. The simulated flow behavior, void formation, and shrinkage agreed with the results in references. Finally, the method was compared with experiments using two-point injection problem. The computed configuration of the flow front and weld line agreed well with the experimental results.  相似文献   

16.
In Liquid Composite Molding (LCM) processes with compliant tool, such as Vacuum Assisted Resin Transfer Molding Process (VARTM), resin flow continues even after the inlet is closed due to the preform deformation and pressure gradient developed during infusion. The resin flow and thickness changes continue until the resin pressure becomes uniform or the resin gels. This post-filling behavior is important as it will determine the final thickness and fiber volume fraction distribution in the cured composite. In this paper, a previously proposed one dimensional coupled flow and deformation process model has been compared with the experimental data in which the resin pressure and part thickness at various locations during the post-filling stage is recorded. Two different post-infusion scenarios are examined in order to determine their impact on the final part fiber volume fraction and thickness. The effects of different venting arrangements are demonstrated. The model predictions compare favorably with the experimental data, with the minor discrepancies arising due to the variability of material properties.  相似文献   

17.
A process cycle of resin transfer molding (RTM) consists of two sequential stages, i.e. filling and curing stages. These two stages are interrelated in non-isothermal processes so that the curing stage is dominated by the resin flow as well as temperature and conversion distributions during the filling stage. Therefore, it is necessary to take into account both filling and curing stages to analyze the process cycle accurately. In this paper, a full three-dimensional process cycle simulation of RTM is performed. Full three-dimensional analysis is necessary for thick parts or parts having complex shape. A computer code is developed based on the control volume/finite element method (CV/FEM). The resulting computer code can provide information regarding flow progression and pressure field during mold filling; and temperature distribution and degree of cure distribution for a process cycle. The computer code can also be used for process cycle simulation of composite structures with complex geometry and with various molding strategies including switching injection strategy, multiple gate injection strategy and variable mold wall temperature. Numerical examples provided in the present work show the capabilities of the computer code in analyzing the process cycle.  相似文献   

18.
In resin transfer molding, void type defect is one of common process problems, it degenerates the mechanical performances of the final products seriously. Void content prediction has become a research hotspot in RTM, while the void formation when the flow direction and the tow direction are not identical or the fabric is sheared has not been studied to date. In this paper, based on the analysis of the resin flow velocities inside and outside fiber tows, a mathematical model to describe the formation of micro- and meso-scale-voids has been developed. Particular attention has been paid on the influence of flow direction and fabric shear on the impregnation of the unit cell, so their effects on the generation and size of voids have been obtained. Experimental validation has been conducted by measuring the formation and size of voids, a good agreement between the model prediction and experimental results has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号