首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用光学显微镜、MTS试验机、显微硬度计等分析和测试了不同塑性变形阶段Cu-19Ni合金退火前后的组织和力学性能,结合扫描电镜进而探讨了退火温度对Cu-19Ni合金细观损伤演变行为的影响。结果表明:控制保温时间60 min不变,随着退火温度的升高,合金晶粒长大,屈服强度、抗拉强度及显微硬度下降。退火前,微观组织由大量细小晶粒组成,合金中条状组织大量存在。材料经过退火后,晶粒发生了不完全再结晶,条状组织减少。合金拉伸断口随着退火温度的升高韧窝尺寸和深度都增加,断口呈现准解理断裂特征。Cu-19Ni合金形状因子随着应变增加而增大,随着退火温度升高而增大。通过对归一化形状因子的函数拟合,建立了拟合方程D=a+be~(ε/c),揭示不同退火温度下Cu-19Ni合金宏观变形与微观组织的关系。  相似文献   

2.
对高层错能的纯Cu和低层错能的Cu-30%Zn(质量分数)合金进行室温多向压缩变形及退火实验,并利用OM、SEM/EBSD、TEM技术及电子万能试验机对其在变形和退火过程中的晶粒细化情况和不同累积变形量(Σε)后的拉伸力学性能进行观察和分析。结果表明:在多向压缩过程中,随着层错能的降低,铜合金的晶粒细化机制由传统的连续动态再结晶(c DRX)细化机制转变成孪晶分割晶粒细化机制。在变形过程中,两者的真应力-累积应变(σ-Σε)曲线呈现稳态流变特征;当Σε2.4后,层错能较低的Cu-30%Zn合金仍存在缓慢的加工硬化,而纯Cu仅在Σε2.4阶段存在加工硬化。随着Σε的增大,层错能较低的Cu-30%Zn合金晶粒细化比纯Cu的更加明显:当Σε=2.4时,Cu-30%Zn合金内部基本为细小的晶粒,这是由其内部的孪晶交叉、分割晶粒而形成;而纯Cu仅在局部出现细晶。随着Σε的增大,Cu-30%Zn合金内部的畸变程度以及变形后的强度也远大于纯Cu的。经Σε=2.4多向压缩变形后,在退火过程中,层错能较低的Cu-30%Zn合金再结晶晶粒明显比纯Cu细小,这是由于其内部层错密度较大,再结晶形核点较多所致。  相似文献   

3.
Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能   总被引:55,自引:8,他引:55  
研究了Mg-Al-Zn系AZ31和AZ61变形镁合金铸锭经不同温度、时间均匀化退火后的组织性能。对均匀化后的合金锭进行了热轧,轧后板材在不同温度下进行了退火,研究其再结晶行为及组织性能。并测量了合金在热轧态及退火态下的主要拉伸力学性能,观察了合金拉伸断口形貌。结果表明,在723K温度均匀化退火8-10h后合金铸锭组织均匀,有利于热轧开坯变形。热轧合金板材在573K温度退火1h可发生完全再结晶,生成细小均匀的等轴晶组织。热轧状态下AZ31和AZ61合金的抗拉强度分别为270.6MPa和260.3MPa,退火后板材强度略有下降,但伸长率有明显提高,分别达到18.8%和11.2%。合金热轧态呈脆性准解理断裂,退火后转变为韧性断裂。  相似文献   

4.
经冷轧变形和中间退火制备了Cu-15Cr形变原位纤维增强复合薄板材料。用SEM、拉伸试验机和电阻率测试仪研究了变形量及退火温度对Cr纤维形貌、合金强度及导电性能的影响。结果表明:随合金变形量的增加,Cr纤维逐渐变薄、变宽,纤维间距逐渐减小,材料的抗拉强度和导电率都逐渐增大。退火温度升高,材料抗拉强度随之降低,导电率先升高后降低,退火温度为550℃时,导电率峰值为84.4%IACS;退火温度升高,Cr纤维依次发生球化,球化加剧、纤维断裂。最终变形量时,材料达到较好的综合性能匹配,退火前抗拉强度和导电率为694 MPa和78%IACS;500℃退火后抗拉强度和导电率为570 MPa和83%IACS。  相似文献   

5.
采用扫描电镜、透射电镜、导电率测试仪及拉伸试验等研究了C19400(Cu-2.18Fe-0.03P)合金冷轧态和不同温度退火态的带材的显微组织、力学性能和导电率.结果 表明:相较于冷轧态,低温退火对C19400合金的组织与性能影响显著;经过400℃退火处理之后,合金的抗拉强度降低至415 MPa,伸长率升高至4.42%.不同退火温度下,整体上合金的断口形貌以韧性断裂为主.冷轧态以及退火态的C19400合金均出现了两种相,一种是球形或者椭球形的α-Fe,另一种是豆瓣状的Fe3P,第二相与基体之间保持半共格关系.此外,冷轧态出现的形变孪晶也并未随着退火温度升高而消失.  相似文献   

6.
通过XRD、TEM、EBSD以及拉伸试验研究硅元素对超细晶黄铜力学性能和退火行为的影响。将Cu-20Zn和Cu-20Zn-1.2Si合金在液氮温度(约-196℃)下进行轧制并进行退火处理。结果表明:与液氮轧制后Cu-20Zn合金相比,液氮轧制后Cu-20Zn-1.2Si合金的强度显著提升,这是因为加入的硅元素使得层错能降低,使其变形后具有细小的晶粒以及较高的位错和孪晶密度。Cu-20Zn-1.2Si合金热稳定性的提升源自层错能(SFE)的降低以及硅原子与位错的相互作用,使得其内部位错运动受阻。退火后的Cu-20Zn-1.2Si合金优异的强度和塑性的综合力学性能源自其组织内部细小的晶粒、形变孪晶以及大量的退火孪晶和HAGBs的共同作用。  相似文献   

7.
经低温液氮轧制的Cu-30%Zn在短时低温退火之后出现异常硬化,其中低温短时退火是为防止晶粒长大。通过万能试验机对其退火之后的试样进行拉伸测试和通过XRD对退火之后试样的微观组织进行分析。结果表明:由于低温退火使Cu-30%Zn的位错密度下降,而拉伸测试时为了开动新的位错源,外界必须施加更大驱动力,从而表现出硬化现象。分析了纳米晶体材料Cu-30%Zn退火之后的力学性能与其微观组织之间的联系机理。  相似文献   

8.
Zr对Cu-15Cr原位复合材料Cr纤维相及性能的影响   总被引:1,自引:0,他引:1  
通过冷轧变形并结合中间退火制备了Cu-15Cr和Cu-15Cr-0.24Zr形变原位纤维复合薄板材料。采用扫描电子显微镜、拉伸试验机和电阻率测试仪研究了Zr及退火温度对Cr纤维形貌、合金强度及导电性能的影响。结果表明:Cr纤维随退火温度升高依次发生:边缘球化、晶界开裂和纤维断裂;Zr的加入使Cr纤维球化、断裂行为延迟约100℃;Zr提高了复合材料的抗拉强度,并使其抗软化温度提高100℃;450℃时,Cu-15Cr的抗拉强度/导电率达到良好的匹配,为656 MPa/81.7%IACS,550℃时,Cu-15Cr-0.24Zr的抗拉强度/导电率达到良好的匹配,为722 MPa/81.3%IACS。  相似文献   

9.
利用真空感应熔炼-铸造工艺制备了微量铬强化的B10合金(即Cu-10Ni-0.3Cr(mass%)合金),并对铸态合金进行固溶、冷变形及退火处理,采用光学显微镜、拉伸测试和四线制测量法等研究了不同处理状态下Cu-10Ni-0.3Cr合金的显微组织、力学性能和电导率。结果表明,铸态Cu-10Ni-0.3Cr合金晶粒为等轴状,晶粒中均匀分布着黑色颗粒状析出相;再结晶退火后合金的组织均匀细小,晶粒内有明显的退火孪晶。铸态合金的导电性最好,电导率为17.15%IACS,900℃固溶2 h后合金的导电性最差,电导率为12.30%IACS。冷轧态(50%变形量)合金的强度、硬度最高,分别为340 MPa、112 HB,延塑性最差,伸长率只有8%;再结晶退火态合金综合力学性能最好;随着退火温度升高,冷轧态合金形变组织逐渐消失,且退火温度愈高,形变组织消失得愈明显,同时晶粒在退火过程中发生长大,最终导致合金强度、硬度降低,塑性增加。  相似文献   

10.
研究了Cu-10Fe-0.15Zr、Cu-10Fe-2Ag-0.15Zr合金微观组织及性能。测定了在不同条件下试验合金的强度和电导率;并利用扫描电镜对材料的微观组织结构进行了观察和分析。结果表明:Cu-10Fe-0.15Zr、Cu-10Fe-2Ag-0.15Zr原位复合材料经(450~500)℃×1 h的最终退火处理,可获得较好的导电性和强度。热稳定性测试表明进行固溶处理后的形变Cu-10Fe-0.15Zr、Cu-10Fe-2Ag-0.15Zr原位复合材料抗软化温度能提高到450~500℃左右。当退火温度低于500℃时,导电率随着温度的升高而升高,而当温度高于这个温度,导电率逐渐下降。Cu-10Fe-2Ag-0.15Zr形变原位复合材料中间退火温度在450℃左右时,可获得最佳的综合性能,抗拉强度1056 MPa、导电率75%IACS、抗软化温度高于450℃。Cu-10Fe-2Ag-0.15Zr合金中添加微量合金元素Ag可使材料的极限抗拉强度增大,并改善材料的热稳定性,但导电率略有提高。  相似文献   

11.
黄铜的超塑性研究   总被引:3,自引:0,他引:3  
引言对 Cu-Zn 合金的研究,一九五九年,苏联普烈斯亚可夫等把 H62黄铜在870℃、Hpb59—1黄铜在770℃拉伸变形,得到180%的延伸率。一九六一年,他们把 Cu-48%Zn 合金在520℃拉伸变形时,得到240%延伸率。一九七二年英国 Sagat 等把 Cu-40%Zn 合金在600℃拉伸变形时,得到515%的延伸率。日本汤浅荣二等把 Cu—40%Zn 合金在600℃拉伸变形时,得到460%延伸率。它们所  相似文献   

12.
采用选区激光熔化(SLM)工艺制备了等原子比CoCrFeMnNi高熵合金,并对试验合金分别进行了650 ℃×1 h和900 ℃×1 h的退火处理。结合微观组织分析、拉伸性能分析和断裂特征分析,研究了退火工艺对SLM制备的CoCrFeMnNi高熵合金组织和力学性能的影响。结果表明:打印态试样屈服强度、抗拉强度和伸长率分别为672 MPa、751 MPa和34.3%。650 ℃×1 h退火处理后,屈服强度、抗拉强度和伸长率略微降低,分别为583 MPa、718 MPa和33.5%。900 ℃×1 h退火处理后屈服强度和抗拉强度分别降低至494 MPa和707 MPa,伸长率提高至46.6%。断口呈典型的韧窝特征,变形机制均为纳米孪生。  相似文献   

13.
采用显微组织观察、拉伸性能测试等试验方法,研究了热变形及退火对Mg-Gd-Y合金的组织和力学性能的影响。试验结果表明:Mg-Gd-Y合金经过热变形后,合金的屈服强度为177 MPa,抗拉强度达到237 MPa,伸长率为4.3%。退火可以明显改善Mg-Gd-Y合金的塑性,退火处理后其塑性大幅提高,伸长率达到了9.2%,但强度略有下降,屈服强度为138 MPa,抗拉强度为216 MPa。  相似文献   

14.
用两种方式等径弯曲通道变形(equal-channel angular pressing,简称ECAP)制备了的具有等轴晶组织的超细晶Cu-0.4Cr合金,晶粒尺寸为500nm。研究了不同挤压方式、不同挤压道次合金的组织和性能的变化。探讨了不同退火温度对5~8道次材料导电率和硬度的影响。结果表明,经ECAP挤压后的Cu-0.4Cr合金具有很好的综合性能,拉伸强度可达565MPa;硬度和导电率分别为225 HV和66.4%IACS;723K退火1h后材料的导电率和硬度可达80.3%IACS和210.9HV;软化温度可达723K。  相似文献   

15.
对退火态Cu-0.2%Al2O3弥散强化铜合金进行最大变形量达99%的冷拉拔加工,采用光学显微镜、扫描电镜、X射线衍射仪和拉伸试验机等测试手段,研究了冷拉拔变形量对合金微观组织、织构、导电率及力学性能的影响规律。结果表明:随着冷拉拔变形量的增加,合金的微观组织由较粗的长条形组织变成细长的纤维组织,并且经过大变形量冷拉拔加工后部分Al2O3颗粒发生了破碎;当变形量为0%时,合金的织构由黄铜织构{011}<211>和立方织构{001}<100>组成,冷拉拔变形量达到60%后,部分立方织构和黄铜织构逐渐转变为高斯织构{011}<100>和铜型织构{112}<111>;冷拉拔变形量对合金导电率几乎没有影响;合金的显微硬度从141 HV0.3增加到161 HV0.3,而合金的抗拉强度由492 MPa增加到637 MPa,屈服强度由452 MPa增加到605 MPa,伸长率由14.0%下降至1.0%,并且发现合金拉伸断裂为韧性断裂。研究结果表明Cu-0.2%Al2O3弥散强化铜合金具有较优良的塑性加工性能。  相似文献   

16.
在液氮温度和室温下对商业纯钛采用不同的压下量进行轧制,并进行真空退火处理。对试样进行单轴拉伸实验和硬度实验研究其力学性能,采用光学显微镜和扫描电子显微镜研究其微观组织和断口形貌,通过电化学实验研究其耐腐蚀性能。结果表明,冷轧可以显著提升商业纯钛的抗拉强度,变形量为90%时可由原始态的281. 4 MPa提升至848. 4 MPa;断裂伸长率由16. 0%降至4. 0%。同时在80%的变形量下,深冷轧制强度(794. 3 MPa)比室温轧制的抗拉强度(691. 8 MPa)更高。随着变形量的增加,断口形貌显示试样由韧性断裂向脆性断裂转变。退火后发生再结晶,硬度大幅度降低,深冷轧制相对室温冷轧的增强强化效果消失。在人工模拟体液中进行开路电位、极化曲线与电化学阻抗谱测试。结果表明,退火使腐蚀电位负移,腐蚀电流密度增大,电荷转移极化电阻减小,退火后纯钛晶粒长大,耐腐蚀性降低。  相似文献   

17.
采用X射线衍射仪、光学显微镜、扫描电镜、硬度测试和拉伸试验等方法研究退火处理对TiZrAlV合金的显微组织和力学性能的影响。结果表明:锻造态TiZrAlV合金由α相、β相以及少量fcc相组成;退火处理后,合金发生α+β+fcc→α+β的相变过程,并且β相含量随退火温度升高而增加;TiZrAlV合金锻造态和退火态的微观组织特点为典型的网篮组织,并且随着退火温度的升高,α相片层的厚度逐渐增大;锻造态TiZrAlV合金的屈服强度、最大抗拉强度、伸长率以及硬度分别为833、955 MPa、13.08%以及36.5 HRC;退火处理后合金的屈服强度得到提升,400℃退火的屈服强度为982 MPa,抗拉强度为1136 MPa,而伸长率和硬度变化不大;退火处理后合金的拉伸断口由大量大小不等的韧窝组成,呈现塑性断裂特征。  相似文献   

18.
研究Cu-4%Au合金的硬度、显微硬度、导电性和微观组织在形变热处理过程中的变化。在加工硬化后,再对轧制合金在60~350°C温度下退火。由于退火硬化效应,合金的强度增大。结果表明:Cu-Au合金性能在两个阶段都得到改善;合金进行变形量为40%的热轧后,在260°C退火能得到最佳的综合性能。合金的微观组织也在形变热处理过程中发生显著变化。  相似文献   

19.
采用扫描电镜、透射电镜、拉伸试验机和热电性能分析系统等研究了退火对Cu-24%Ag合金显微组织、力学性能以及电学性能的影响,通过构建电子界面散射模型对合金导电机制进行了研究。结果表明,通过退火对Cu-24%Ag合金的显微组织进行了有效调控,改善了其综合性能。与冷轧态相比,合金经350 ℃退火1 h后,抗拉强度下降至冷轧态的95%,合金导电率提升了4%IACS。经450 ℃退火1 h,由于Ag纤维的溶解,合金的抗拉强度显著下降,只有冷轧态的一半左右;Ag纤维的溶解降低了电子的散射几率,使得导电率大幅度提升。因此,合金在350 ℃退火1 h后综合性能最佳,其抗拉强度和导电率分别为622 MPa和81%IACS。  相似文献   

20.
在250、300、400℃下分别对Al-0.75Mg-0.75Si-0.8Cu-0.7Zr合金进行大应变轧制变形,采用拉伸性能测试和扫描电镜(SEM)等研究了轧制温度对不同处理态合金显微组织和力学性能的影响。结果表明:在250℃轧制时,Al-0.75Mg-0.75Si-0.8Cu-0.7Zr合金的抗拉强度为204 MPa,伸长率为15.2%;随着轧制温度的升高,强度逐渐降低,而伸长率不断增大;合金经300℃热轧+510℃×80 min+195℃×13 h+冷轧加工后的晶粒最为细小,其综合力学性能最好,抗拉强度为475 MPa,伸长率为8.13%,断口上分布着大量细小均匀的韧窝。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号