首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了时效温度和时间对Cu-0.3Cr-0.05Ti合金导电率的影响。结果表明:Cu-0.3Cr-0.05Ti合金在400℃×2 h时效,可获得83%IACS的导电率,随着时效时间的延长,导电率变化趋于平缓。根据导电率与新相的转变量之间的关系计算出时效过程中新相的转变比率,利用马基申-富列明格规律和Avrami经验方程,推导出Cu-0.3Cr-0.05Ti合金在不同时效温度的析出动力学方程,并得到合金不同时效温度的等温转变曲线。  相似文献   

2.
研究了时效温度和时间对Cu-0.3Cr-0.05Ti合金导电率的影响。结果表明:Cu-0.3Cr-0.05Ti合金在400℃×2 h时效,可获得83%IACS的导电率,随着时效时间的延长,导电率变化趋于平缓。根据导电率与新相的转变量之间的关系计算出时效过程中新相的转变比率,利用马基申-富列明格规律和Avrami经验方程,推导出Cu-0.3Cr-0.05Ti合金在不同时效温度的析出动力学方程,并得到合金不同时效温度的等温转变曲线。  相似文献   

3.
研究了时效温度和时间对Cu-5Fe-2Sn合金强度与导电性能的影响。根据导电率与析出相转变量之间关系,计算了Cu-5Fe-2Sn合金时效过程中析出相的转变率;借助Martition定律和Avrami经验方程,得到了Cu-5Fe-2Sn合金在不同时效温度下的动力学方程和导电率方程。与实验结果比较发现,导电率方程可准确表达Cu-5Fe-2Sn合金时效过程中导电率的变化。  相似文献   

4.
研究了时效处理对Cu-3Ti-3Ni合金组织与性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)对Cu-3Ti-3Ni合金的组织和析出相进行了表征,并对其硬度、导电率和弹性模量进行了测试。结果表明:Cu-3Ti-3Ni合金时效处理后析出Ni_3Ti及β'-Cu_4Ti相。随着时效时间的延长,部分合金元素回溶于Cu基体,连续的亚稳定β'-Cu_4Ti相向不连续的稳定Cu3Ti相转变。Ni_3Ti相及β'-Cu_4Ti相的析出减少了Ti原子的固溶,导致导电率升高。经过合适的时效处理,Cu-3Ti-3Ni合金中的Ni_3Ti相及连续的亚稳定β'-Cu_4Ti相析出完全,导致硬度升高,但时效处理对合金弹性模量影响不大。在本实验范围内,Cu-3Ti-3Ni合金的最佳时效处理工艺是300℃时效2 h后炉冷,随后450℃时效7 h炉冷。Cu-3Ti-3Ni合金的HV硬度、导电率及弹性模量分别是1.83 GPa、31.34%IACS(国际退火铜标准)及148.62 GPa。  相似文献   

5.
研究Ni的添加及时效处理对Cu-3Ti合金组织与性能的影响。采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及高分辨透射电子显微镜(HRTEM)对Cu-3Ti-1Ni合金的组织和析出相进行表征,并对其硬度和导电率进行测试。结果表明:Ni的添加导致铸态Cu-3Ti合金在凝固过程中形成Ni Ti相,组织由树枝晶转变为等轴晶。时效处理后析出共格的亚稳定β'-Cu4Ti相,过时效导致β'-Cu4Ti相转变为非共格的层片稳定相Cu3Ti。同时,时效处理导致出现了退火孪晶,且在合金基体中发现位错线的聚集。Ni的添加提高了Cu-3Ti合金的导电率,降低了其硬度。在实验范围内,Cu-3Ti-1Ni合金的最佳时效处理工艺是300°C时效2 h后炉冷,随后450°C时效7 h炉冷,其硬度及导电率分别是HV 205及18.2%IACS(国际退火铜标准)。  相似文献   

6.
本文研究了时效处理对Cu-3Ti-3Ni合金组织与性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)对Cu-3Ti-3Ni合金的组织和析出相进行了表征,并对其硬度、导电率和弹性模量进行了测试。结果表明:时效处理后析出Ni3Ti及 β''-Cu4Ti相。随着时效时间的延长,部分合金元素回溶于Cu基体,连续的亚稳定β''-Cu4Ti相向不连续的稳定Cu3Ti相转变。Ni3Ti相及β''-Cu4Ti相的析出减少了Ti原子的固溶,导致导电率升高。经过合适的时效处理,Cu-3Ti-3Ni合金中的Ni3Ti相及连续的亚稳定β''-Cu4Ti相析出完全,导致硬度升高,但时效处理对合金弹性模量影响不大。在本实验范围内,Cu-3Ti-3Ni合金的最佳时效处理工艺是 300°C时效2 h后炉冷,随后450 °C时效7 h炉冷。Cu-3Ti-3Ni合金的硬度、导电率及弹性模量分别是183 HV、31.34 % IACS (国际退火铜标准)及148.62 GPa。  相似文献   

7.
采用固溶+冷变形+不同直流电流密度下的时效工艺制备了Cu-0.33Cr-0.06Zr(质量分数,下同)合金试样。进行了450℃下不同时效时间及不同电流密度的时效试验,研究了时效电流和时间对Cu-0.33Cr-0.06Zr合金导电性能的影响。采用透射电镜观察时效合金组织,探讨了不同电流密度下该合金的时效析出动力学。结果表明,合金在电流密度为100A/cm2的直流电流下时效,电导率低于无电流时效的;而在电流密度为400 A/cm2下时效2h后,电导率达到49.5MS/m,接近峰值,高于无电流时效的。时效后合金析出Cr相和CuZr3相,通过对电导率与析出相体积分数关系的分析,确定了合金在不同温度下时效的相变动力学Avrami经验方程和电导率方程。  相似文献   

8.
采用中频感应熔炼炉制备了Cu-0.7Cr-0.15Zr和Cu-0.7Cr-0.15Zr-0.05Mg-0.02Si两种合金,研究了Mg、Si复合微合金化对Cu-Cr-Zr合金时效工艺参数、性能与析出动力学的影响。结果表明:Mg、Si复合微合金化提高了Cu-Cr-Zr合金的最佳时效温度,延长了保温时间,Cu-0.7Cr-0.15Zr合金的最佳时效工艺为410 ℃时效8h,Cu-0.7Cr-0.15Zr-0.05Mg-0.02Si合金的最佳时效工艺为430 ℃时效14 h。Mg、Si复合微合金化提高了Cu-Cr-Zr合金的强度与导电率,Cu-0.7Cr-0.15Zr合金最佳工艺条件下的强度为570 MPa、电导率为79.1%IACS;Cu-0.7Cr-0.15Zr-0.05Mg-0.02Si合金最佳时效工艺条件下的强度为595 MPa、电导率为80.4%IACS。Mg、Si复合微合金化改变了Cu-Cr-Zr合金Avrami相变动力学方程,减缓了时效析出过程。  相似文献   

9.
通过真空熔炼的方法制备了Cu-0.80Cr-0.30Zr-0.03P合金,研究了合金经冷变形及固溶时效处理后的导电率和显微硬度等性能,绘制了Cu-0.80Cr-0.30Zr-0.03P合金的相变动力学(S)曲线以及等温转变动力学(TTT)曲线,同时分析了合金的时效析出相种类。结果表明:Cu-0.8Cr-0.30Zr-0.03P合金的最佳热处理工艺为900℃×1 h固溶处理,之后80%冷变形,最后450℃时效4 h,此时合金的导电率、显微硬度、抗拉强度和伸长率分别为84.03%·IACS、187.7 HV0.2、428 MPa和9.8%,对合金时效后的衍射花样进行标定,确定析出相为Cu_(10)Zr_7。  相似文献   

10.
研究了时效处理后不同程度冷变形的Cu-1.5Ni-1.0Co-0.6Si合金的时效行为,利用光学显微镜和透射电镜分析了合金时效过程和显微组织,并对其孪晶及析出相进行了标定;同时研究了时效处理和冷轧变形量对合金导电率和显微硬度的影响,建立了导电率方程和时效析出动力学方程,探讨了合金的时效强化机制和时效析出动力学。结果表明:经过时效处理,Cu-1.5Ni-1.0Co-0.6Si合金的硬度和导电率均得到提升;Cu-1.5Ni-1.0Co-0.6Si合金经40%冷轧变形后,在500℃时效1 h后,其导电率为44%·IACS,显微硬度为255 HV0.1。Cu-1.5Ni-1.0Co-0.6Si合金在500℃时效时,合金析出相析出完成所用时间最短。  相似文献   

11.
采用单辊旋淬快速凝固法制备了50~150μm厚的Cu-2.8Ni-0.7Si合金薄带,研究了时效温度和时效时间对其电导率和抗拉强度的影响。结果表明,在同一时效温度下,随着时效时间的延长,Cu-2.8Ni-0.7Si合金薄带的电导率不断增大,抗拉强度则是先升高后降低。时效峰值过后,抗拉强度下降的速度随时效温度的增大而增大。Cu-Ni-Si合金时效过程中,电导率增量与δ-Ni_2Si相的析出量存在线性关系,通过测量电导率能确定δ-Ni_2Si相的析出,确定了新相析出率的Avrami相变动力学方程和该铜合金薄带中δ-Ni_2Si相析出的电导率方程,并计算拟合了析出相与时效时间的动力学曲线。  相似文献   

12.
研究了Cu-3.6Ti-0.4Co合金的时效硬化规律,发现对Cu-3.6Ti合金添加0,4%Co可在不显著降低时效峰值硬度的前提下.大幅度缩短达到峰值硬度所需的时效时间,同时还明显降低了时效温度,有利于节约工艺成本.试验还表明,时效前的冷轧不仅能显著提高Cu-3.6Ti-0.4Co合金的时效峰值硬度,也能显著缩短达到峰值硬度所需时效时间.但冷轧合金后期时效期间将出现更明显的过时效现象.分析认为,其主要原因是高密度位错在时效后期促使形成柯垂耳气团而导致析出停滞,结果是,后期时效主要发生析出相长大而无新相析出强化,使显微硬度下降速度明显高于未冷轧合金.  相似文献   

13.
研究了冷变形及时效处理对Cu-3Ti-2Mg合金组织与性能的影响。采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)及电子背散射衍射(EBSD)对Cu-3Ti-2Mg合金的组织和析出相进行了表征,并对其硬度和导电率进行了测试。结果表明:铸态Cu-3Ti-2Mg合金由Cu_2Mg相、板条状Cu_4Ti相及Cu基体组成。时效处理后析出β'-Cu_4Ti相,过时效则会导致亚稳定β'-Cu_4Ti相转变为稳定的Cu_3Ti相。在本实验范围内,Cu-3Ti-2Mg合金的最佳热处理工艺是700℃保温4 h后水淬,随后冷变形60%并在450℃保温2 h炉冷。Cu-3Ti-2Mg合金的导电率及硬度HV分别是16.7%IACS和3280 MPa。  相似文献   

14.
采用非真空熔炼制备了Cu-0.37Cr-0.046Sn合金铸锭,并进行了热挤压—冷拉—固溶(980℃/1 h,水淬)—冷拉—时效等。研究了时效处理对合金性能影响以及不同温度下该合金的时效析出动力学。结果表明:经450℃/2 h时效后,合金抗拉强度和电导率分别提高到503 MPa和90.1%IACS。通过对电导率与析出相体积分数关系的分析,确定了合金在不同温度下时效的相变动力学Avrami方程和电导率方程,并绘制等温转变动力学曲线。  相似文献   

15.
Cu—Cr—Zr—Si合金的时效析出行为研究   总被引:1,自引:0,他引:1  
通过固溶态Cu-0.37Cr-0.18Zr-0.04Si合金在450℃时效时电导率的变化规律,计算时效过程中析出相的转变比率.并确定了450℃时效时合金时效析出相转变比率与时效时间的关系以及电导率随时效时间变化的一元方程.在此基础上绘制了450℃时效时体积分数与等温时间之间关系的相变动力学"S"曲线.同时用固态热分解反应机理的微分方程探讨了合金的时效转变机制.  相似文献   

16.
通过对Cu-0.1Ag-0.1Fe合金恒温时效过程中的导电率与析出的新相体积间的关系的测定与分析,研究了该合金的时效动力学,并由此确定了不同温度下描述新相转变比率与时效时间关系的Avrami经验方程和计算导电率随时效时间变化的导电率方程,从而描绘出不同温度时效时的相变动力学"S"曲线以及等温转变"C"曲线。  相似文献   

17.
采用拉伸实验、扫描电子显微分析(SEM)、透射电子显微分析(TEM)、高分辨电子显微技术研究Li添加对Al-3.5Cu-1.5Mg合金力学性能与时效析出行为的影响。结果表明:添加1.0%Li能使Al-3.5Cu-1.5Mg合金的峰值时效拉伸强度明显提高,伸长率略有下降。峰值时效拉伸样品的断口形貌由韧断口转变为韧/脆混合型。Li使合金185℃峰值时效时间由12 h延长至24 h,析出相由S′(Al_2CuMg)转变为S′(Al_2CuMg)+δ(Al_3Li)。在Al-3.5Cu-1.5Mg-1.0Li合金中,S(Al_2CuMg)相时效析出延缓。  相似文献   

18.
研究了Ti1023和Ti5553钛合金经过固溶与低温时效处理(ST-SQA)获得的微观组织和析出硬化行为。采用扫描电镜和透射电镜观察了不同温度时效处理后α相的析出形貌以及分布特点,统计了时效析出次生α相的析出密度和宽度随时效温度的变化情况,并测试了合金的维氏硬度。结果表明:Ti1023合金时效处理时次生α的析出温度低于Ti 5553合金。Ti1023合金在300℃时效时α相已经析出,400℃时效时α相析出密度到达峰值;Ti5553合金在450~500℃时效α相开始析出,在550℃时效α相的析出密度达到峰值。Ti1023合金硬度随着时效温度的增加先升后降,400℃时效硬度最高;在相同的时效温度范围,Ti5553合金硬度变化出现双峰规律,硬度峰值分别对应于350和550℃时效温度。2种合金的硬度变化规律源于合金时效中第二相的析出行为:时效温度低于400℃,Ti1023合金的硬度取决于α相和ω相,而Ti5553合金的硬度取决于ω相;时效温度高于400℃,2种合金的硬度均主要取决于次生α相的数量与尺寸。  相似文献   

19.
热轧态Cu-Fe-P合金的相变动力学研究   总被引:1,自引:0,他引:1  
通过对热轧态Cu-2.5%Fe-0.03%P-0.1%Zn合金时效过程中的导电率与析出相体积分数之间的关系研究了该舍金的相变动力学。以不同温度时效时的导电率试验数据可确定该合金的相变动力学方程的系数,从而描绘出不同温度时效时的相变动力学“S”曲线以及合金等温转变TTT曲线。  相似文献   

20.
本文研究了冷变形及时效处理对Cu-3Ti-2Mg合金组织与性能的影响。采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)及电子背散射衍射(EBSD)对Cu-3Ti-2Mg合金的组织和析出相进行了表征,并对其硬度和导电率进行了测试。结果表明:铸态Cu-3Ti-2Mg合金由Cu2Mg相、板条状Cu4Ti相及Cu基体组成。时效处理后析出β"-Cu4Ti相,过时效则会导致亚稳定β"-Cu4Ti相转变为稳定的Cu3Ti相。在本实验范围内,Cu-3Ti-2Mg合金的最佳热处理工艺是 700°C 保温4h后水淬,随后冷变形60%并在450 °C保温2 h炉冷。Cu-3Ti-2Mg合金的导电率及硬度分别是16.7 % IACS和328 HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号