首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
淬火温度对Cr-Mo-V系低合金高强度钢力学性能的影响   总被引:4,自引:1,他引:4  
研究了改变淬火温度对Cr-Mo-V系高强度力学性能的影响。结果表明,随着淬火温度的升高,硬度和强度逐渐提高,但当淬火温度超过1000℃后,硬度和强度的变化不明显。在所研究的整个淬火温度范围内,随着淬火温度的升高,塑性和韧性逐渐降低,且韧性的降低幅更大。由于添加了微合金元素V和Nb,当淬火温度低于1000℃,试验钢具有细小的奥氏体晶粒,逐渐降低,且韧性的降低幅度更大。由于添加了微合金元素V和Nb,当淬火温度低于1000℃,试验钢具有细小的奥氏体晶粒。  相似文献   

2.
研究了不同固溶时效温度对10Ni3MnCuAl钢组织和力学性能的影响。结果表明:10Ni3MnCuAl钢在830~890℃固溶后可以获得优良的综合力学性能;在400~500℃时效时,随温度的升高,强度逐渐升高,塑韧性逐渐降低;500℃时效时硬化达到最大效果,强度达到峰值,塑韧性降到低谷;超过500℃后,随温度的升高,强度逐渐降低,塑韧性逐渐升高;与固溶态的钢相比,时效后钢的冲击韧度大幅下降,但与原始态的试验钢相比,同等硬度时,特别是过时效状态下,冲击韧度有了大幅提高。  相似文献   

3.
采用力学性能测试、组织观察等方法研究回火温度对26CrMo钢显微组织和力学性能的影响。结果表明,26CrMo钢经540~690℃回火,随回火温度升高,显微组织中a相基体逐渐发生回复与再结晶,组织中马氏体形态逐渐消失,碳化物先在马氏体板条边界呈片状或棒状析出,逐渐演变为颗粒状弥散分布,690℃时碳化物在晶界聚集长大、球化。随回火温度升高,26CrMo钢强度逐渐降低,塑性、韧性逐渐增大;不同回火条件下,抗拉强度、屈服强度、延伸率和冲击功满足API 5DP标准中各级别钻杆要求。随回火温度升高,26CrMo钢总冲击功、起裂功和裂纹扩展功均逐渐增大,裂纹扩展功是起裂功的3倍以上,且两者比值变化不明显,表现出良好的抗裂纹扩展能力。不同回火温度下冲击性能的变化与其强度、塑性变化密切相关,冲击韧性好坏主要由塑性大小决定。  相似文献   

4.
以一种屈服强度为1100 MPa的高强度工程机械用钢为对象,研究了再加热淬火温度(880~980 ℃)和回火温度(200~650 ℃)对Q1100钢显微组织和力学性能的影响。结果表明,淬火温度从880 ℃升高至980 ℃,试验钢的平均奥氏体晶粒尺寸从8 μm增加到24 μm,试验钢的屈服强度和抗拉强度都呈先升高后降低的趋势,并在920 ℃时达到最大,而-40 ℃冲击性能则随之持续降低。试验钢经920 ℃淬火+200~650 ℃回火后,随着回火温度的提高,试验钢的马氏体板条合并,板条形貌逐渐模糊,碳化物数量和形貌也随之发生改变,强度大幅下降,塑性和韧性则先降低后升高。试验钢最佳的热处理工艺为920 ℃淬火+200~250 ℃回火。  相似文献   

5.
对一种中碳低合金超高强钢进行直接淬火到马氏体区等温处理,采用场发射扫描电镜和X射线衍射仪等设备研究了等温温度对组织和力学性能的影响。结果表明:随等温温度升高,抗拉强度不断降低,屈服强度先降低后升高,冲击功先增加后降低,伸长率略有增加。在260℃等温处理,实验钢具有最好的综合力学性能,抗拉强度1600 MPa,伸长率13.8%,-20℃冲击功24 J。不同等温处理后组织均包含初生马氏体、新生马氏体和残余奥氏体。随等温温度升高,残余奥氏体含量先增加后降低,在260℃等温处理残余奥氏体含量最大,为9.3%。在300℃等温处理,组织中出现了尺寸较大的块状新生马氏体,导致韧性降低。  相似文献   

6.
研究了500℃以上高温回火对GCr15SiMn轴承钢组织形貌和力学性能的影响。结果表明,随回火温度的升高,试验钢的强度和硬度下降,塑性和韧性上升;在高温回火过程中,淬火马氏体的形态逐渐消失,碳化物聚集长大,强度和硬度下降,塑性升高。这是由于碳化物的长大对位错的钉扎作用减弱,而大颗粒的碳化物可以阻碍裂纹的扩展,使断裂的解理面减小,韧性得到改善。碳化物是影响力学性能的重要因素。  相似文献   

7.
采用真空感应炉冶炼了试验钢,并用二辊可逆式轧机进行了轧制,分别用空冷、水淬、油淬三种方式冷却,并对水淬后的试验钢进行了不同温度的回火处理,研究了冷却方式及回火对试验钢组织及性能的影响。结果表明,水淬试验钢的强度最高,而冲击功及塑性最差;油淬钢的强度低于水淬,但冲击功最高,空冷钢的强度最低,塑性最高。空冷钢的组织以粒状贝氏体为主,以及不规则铁素体;水淬钢的组织为细小的板条贝氏体+少量粒状贝氏体;油淬钢的组织为细小的板条状贝氏体。回火对试验钢强度的影响不大,对塑性、韧性的影响则比较明显。强度随回火温度提高先略微升高后降低,韧性则先降低后升高。600℃时获得最高强度及较优的塑性和韧性,550℃时发生脆化。  相似文献   

8.
对主要成分为0.15%C、2.41%Cr和0.94%Mo(质量分数)的K21590钢进行了不同工艺的调质处理:淬火温度为865℃、890℃和970℃,油淬;回火温度为530~680℃。随后检测了钢的显微组织和力学性能。结果表明:随着淬火温度的提高,回火后钢的残留奥氏体增多,强度提高,塑性、韧性降低;淬火温度相同,当回火温度提高至650℃以上时,渗碳体呈弥散分布,马氏体位相不明显,强度降低,塑性、韧性升高。  相似文献   

9.
针对自主设计的新型Cr-Ni-Mo低合金超高强度钢,开展了奥氏体化温度对其组织与力学性能的研究。结果表明:随奥氏体化温度的升高,钢的强度、硬度和塑性先升高,当奥氏体化温度超过920℃后,强度、硬度和塑性降低。-40℃低温冲击韧性随奥氏体化温度的升高而逐渐升高。奥氏体化温度升高,钢的马氏体板条变宽,晶粒长大,碳化物逐渐溶解。试验钢在测试温度范围内最大抗拉强度1990 MPa,伸长率9.2%,断面收缩率56%,淬火态硬度55.6 HRC,此时,-40℃冲击吸收能量为8 J。  相似文献   

10.
采用不同的回火温度(500、550、600和650 ℃)对EA4T车轴用钢进行调质热处理,使用OM、SEM、拉伸试验及冲击试验等测试分析了材料的显微组织和力学性能,研究了回火温度对EA4T钢显微组织及力学性能的影响。结果表明,随着回火温度的升高,回火组织转变为回火索氏体,EA4T钢强度有所降低,韧性及塑性提高。当回火温度升高至600 ℃以上时,EA4T钢的冲击断口形貌呈韧窝状。回火处理后,EA4T钢抗拉强度与硬度的经验公式为:Rm=2.9477V+45.59。  相似文献   

11.
以低Si含Al热轧TRIP钢为研究对象,采用扫描电子显微镜、拉伸试验、X射线衍射仪和电子探针等试验方法,研究了不同等温温度对试验钢组织性能的影响。结果表明,试验钢的显微组织主要由多边形铁素体、贝氏体铁素体和残余奥氏体组成,随着等温温度的升高,残余奥氏体分解为新生成铁素体和碳化物;当等温温度为450 ℃时,试验钢的力学性能最佳,其抗拉强度为732.25 MPa,断后伸长率为36%,强塑积为26.36 GPa·%;残余奥氏体的体积分数先升高后降低,而C含量逐渐降低,等温温度为450 ℃时试验钢表现出较强的加工硬化行为。  相似文献   

12.
研究了淬火加不同温度回火热处理对04Cr13Ni5Mo钢组织、常温和高温力学性能的影响。结果表明:经淬回火处理后,组织以较细的板条状回火马氏体为主;随着回火温度的升高,强度、硬度逐渐增大,塑韧性有不同程度的降低;在高温进行拉伸试验,随温度的升高,强度增大,断后伸长率则先增加后降低。  相似文献   

13.
采用显微组织观察、拉伸试验、冲击试验、冲击断口形貌分析等方法,研究了不同冷处理温度对Q345低合金结构钢组织及力学性能的影响。结果表明:在0~-45℃,随着冷处理温度的降低,Q345试验钢中析出的碳化物逐渐增多,抗拉强度与屈服强度逐渐升高,伸长率和冲击吸收能量逐渐降低。冷处理温度为-30~-15℃时,试验钢的强度、伸长率、冲击吸收能量变化最为显著。随着冷处理温度的降低,Q345试验钢的冲击断口由韧性断裂转变为脆性断裂,-30℃冷处理试验钢的冲击断口纤维区百分比为49%,Q345钢的韧脆转变温度在-30℃左右。  相似文献   

14.
研究了回火温度对不同Mo含量的40CrNi3MoV试验钢组织和力学性能的影响。结果表明,试验钢在525 ℃回火时开始析出M2(C, N)相,在550~575 ℃回火时M2(C, N)相含量达到峰值。随回火温度的升高,试验钢硬度和强度降低,但塑性和韧性则升高。由于M2(C, N)相的二次硬化作用,将Mo含量从0.43%提高到1.06%后,40CrNi3MoV钢经575 ℃回火后的抗拉强度可以达到1500 MPa级,同时具有良好的塑性和韧性。  相似文献   

15.
研究了1050~1080℃高温固溶处理以及500℃回火后耐高温轴承钢的组织和性能。结果表明,当固溶温度在1050~1080℃之间时,试验钢的强度随着固溶温度的升高逐渐降低,而塑性和冲击性能逐渐升高;固溶温度的提高会使马氏体板条由短粗逐渐变长、变细,提高了试验钢的塑性和冲击性能。随着固溶温度的升高,试验耐高温轴承钢的奥氏体晶粒显著长大和粗化,导致其强度降低。  相似文献   

16.
刘玉荣  米永峰  马越  岳林 《钢管》2017,46(1):15-18
研究了不同淬火温度和回火温度对S135钻杆组织和力学性能的影响。试验结果表明:随着回火温度的提高,试验钢的屈服强度和抗拉强度下降,而塑性和韧性上升;淬火温度对试验钢性能影响不大;在880℃淬火、保温30 min,540~580℃回火、保温60 min,试验钢有较好的力学性能。  相似文献   

17.
采用场发射扫描电镜、X射线衍射仪等设备研究了淬火终冷温度对直接淬火配分超高强钢组织与力学性能的影响规律。结果表明,随淬火终冷温度升高,抗拉强度先下降后升高,屈服强度则不断降低,冲击吸收能量和伸长率先增加后降低。直接淬火配分钢的组织由初生马氏体、新生马氏体和残留奥氏体构成。随淬火终冷温度升高,残留奥氏体含量先增加后降低,淬火冷却到260 ℃时残留奥氏体含量最高,为16%,试验钢具有最好的综合力学性能,抗拉强度超过1533 MPa,伸长率为16%,-20 ℃冲击吸收能量为26 J。淬火冷却到300 ℃,组织中出现了尺寸较大的块状新生马氏体,导致塑性和韧性降低。  相似文献   

18.
采用场发射扫描电镜、X射线衍射仪等设备研究了淬火终冷温度对直接淬火配分超高强钢组织与力学性能的影响规律。结果表明,随淬火终冷温度升高,抗拉强度先下降后升高,屈服强度则不断降低,冲击吸收能量和伸长率先增加后降低。直接淬火配分钢的组织由初生马氏体、新生马氏体和残留奥氏体构成。随淬火终冷温度升高,残留奥氏体含量先增加后降低,淬火冷却到260℃时残留奥氏体含量最高,为16%,试验钢具有最好的综合力学性能,抗拉强度超过1533 MPa,伸长率为16%,-20℃冲击吸收能量为26 J。淬火冷却到300℃,组织中出现了尺寸较大的块状新生马氏体,导致塑性和韧性降低。  相似文献   

19.
利用Gleeble-3500热模拟试验机、光学显微镜和拉伸试验机分析研究了连续退火工艺中均热温度、缓冷温度和过时效温度对DP980钢力学性能及组织的影响。结果表明:随着均热温度的升高DP980钢组织中马氏体含量逐渐增加,规定塑性延伸强度和抗拉强度也随之提高,经分析选取780 ℃为最优均热温度。研究缓冷温度对DP980双相钢力学性能的影响,结合连退产线设备控制能力,选取670 ℃为最优缓冷温度。此外,过时效温度对DP980钢规定塑性延伸强度具有较大调整幅度,能够显著降低其屈强比,随着过时效温度的升高,DP980钢组织中马氏体含量基本不变并伴有少量的碳化物析出,能够降低马氏体的强度即改善双相钢塑性。最终确定均热温度780 ℃、缓冷温度670 ℃和过时效温度320 ℃的最优工艺参数。  相似文献   

20.
通过试验研究了不同等温转变温度下低温贝氏体钢的显微组织,探索了残余奥氏体的形态和稳定性对试验钢力学性能和断裂行为的影响。利用扫描电镜、透射电镜和X射线衍射对低温贝氏体钢的微观组织、拉伸及冲击断口形貌进行了表征。结果表明,随着等温转变温度的升高,试验钢的抗拉强度保持在1500 MPa以上,屈服强度由945 MPa下降至806 MPa,断后伸长率由14.0%下降至9.0%。等温转变温度对试验钢残余奥氏体的形态和稳定性有明显影响,随着等温转变温度的上升,残余奥氏体从富碳细条状和薄膜状变成贫碳块状,在塑性变形初期,这种形态的残余奥氏体大量、快速地发生应变诱发马氏体相变,为裂纹扩展提供了路径,从而降低了钢的韧性和塑性,使试验钢的拉伸和冲击断口的延性穿晶断裂特征更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号