首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用加热炉、硬度计、拉伸试验机等设备研究了液态模锻6061铝合金在单级时效、双级时效等不同时效制度下的力学性能。结果表明:同单级时效相比,双级时效处理对合金的硬度影响不大。双级时效条件下,预时效和终时效温度顺序对液态模锻6061铝合金合金的抗拉强度影响不大,主要影响合金的屈服强度和伸长率;终时效温度越高合金屈服强度越高,强化速率越快,伸长率下降也越大。 液态模锻6061 铝合金在560 ℃固溶5 h后经200 ℃预时效1 h,185 ℃终时效3.5 h 时具有较好的力学性能,抗拉强度达到362.2 MPa,屈服强度达到311.5 MPa,伸长率为12.1%。  相似文献   

2.
对喷射成形6061铝合金的热处理工艺进行研究,采用硬度测试、拉伸试验和透射电镜等研究固溶温度、时效温度和时效保温时间对合金显微组织和力学性能的影响规律。结果表明:随固溶温度的升高,合金硬度也随之升高,而其抗拉强度、屈服强度和断后伸长率则先增大后减小;合金硬度、抗拉强度和屈服强度随时效温度的升高先增大后减小,断后伸长率却一直减小;合金硬度、抗拉强度和屈服强度曲线随时效温保温时间的延长呈驼峰状变化,断后伸长率则变化不大,只在17 h时有所增大;喷射成形6061铝合金的最佳热处理工艺为530℃固溶1 h+175℃时效8 h。  相似文献   

3.
采用金相显微镜、透射电镜和拉伸试验机等研究了固溶时间、时效温度和时效时间对绿色建筑用6061铝合金模板显微组织和力学性能的影响.结果 表明,随着固溶时间的延长、时效温度的升高或者时效时间的延长,6061铝合金的抗拉强度、屈服强度和硬度会先增大后减小,断后伸长率则先减小后增大;当535℃/60 min固溶及180℃/7 ...  相似文献   

4.
GW01铝合金是在6061铝合金基础上研发的一种新型高强铝合金。采用三因素三水平的正交实验,研究了固溶温度-时间、时效温度、时效时间三因素对GW01铝合金T6处理后力学性能的影响规律。结果表明:随着固溶温度的提高和固溶时间的缩短,GW01铝合金的抗拉强度、屈服强度和硬度均有大幅度提高,其伸长率则先降低后升高;随着时效温度的升高,GW01铝合金的抗拉强度、屈服强度、硬度以及伸长率均不断降低;GW01铝合金的抗拉强度、屈服强度以及硬度均对时效时间不敏感,随时效时间的延长只有小幅度的降低,其伸长率则随时效时间的延长有一定幅度的提高。(510℃,3 h,水淬)+(170℃,18 h,空冷)的T6热处理可以使GW01铝合金管材获得良好的综合力学性能。  相似文献   

5.
采用硬度、拉伸力学性能测试和电子显微分析技术,研究了固溶-时效处理对6061铝合金挤压棒材组织与性能的影响。结果表明,6061铝合金挤压态组织除固溶体基体外,还包括亚微米级的Mg2Si平衡相、含Cr相和α-AlFe(Cr)Si夹杂相;固溶过程中,亚微米级的Mg2Si平衡相溶解而含Cr相及α-AlFe(Cr)Si夹杂相仍然保留下来;时效过程中,铝合金表现出明显的时效硬化效应,GP区的形成是合金强化的主要原因。6061铝合金棒材合适的固溶-时效制度为535℃50 min固溶、水淬后180℃6 h时效,在此条件下,合金棒材的抗拉强度、屈服强度和伸长率分别为339N/mm2、309 N/mm2和14.3%。  相似文献   

6.
采用中心组合设计(Central composite design, CCD)试验方法对选定温度下的6061铝合金固溶+双级时效处理工艺中的时间参数进行系统试验设计,结合力学性能测试结果得出时间参数与抗拉强度的可靠数学模型(r2=0.9078)。通过模型计算及方差分析结果可知二级时效时间对抗拉强度的影响十分显著且与抗拉强度呈负相关关系。据此得出最佳热处理工艺为550 ℃×108 min固溶+180 ℃×246 min峰时效+220 ℃×3 min二级时效,该工艺下6061铝合金的抗拉强度值为345 MPa,断后伸长率为13.5%。  相似文献   

7.
用气雾化铝合金粉为原料,通过高速压制和烧结工艺获得高密度铝合金,然后对其进行热处理,研究了固溶处理对合金性能的影响,并分析讨论其机理。结果表明,高速压制法制备的铝合金组织均匀、致密。经过固溶和时效处理,合金的强度明显提高,塑性略有下降。经过500℃×30 min的固溶+180℃×360 min的时效,合金的抗拉强度可达206 MPa,屈服强度165 MPa,伸长率2%。  相似文献   

8.
对直径为φ95 mm的Ti-662钛合金棒材进行了热处理试验,研究了固溶和时效温度对其力学性能的影响.结果表明,时效温度600℃时,随固溶温度的升高,硬度、抗拉强度及屈服强度提高,伸长率和断面收缩率减小;固溶温度为880℃时,随时效温度的升高,抗拉强度和屈服强度减小,伸长率和断面收缩率增大.热处理工艺为880℃×1h,WQ+ 600℃×4h,AC时,材料的硬度、强度和塑性达到最佳匹配.  相似文献   

9.
通过分析7075/6009铝合金层状复合板材内层显微组织与显微硬度分布,研究了固溶处理对板材内层显微组织与力学性能的影响。结果表明:在470~500℃范围内,随着固溶温度的升高,板材内层和过渡区的显微硬度值呈先升后降的趋势,在485℃时达到峰值,而外层显微硬度值呈上升趋势;内层显微组织在485℃时残留的颗粒相数量最少,而在500℃时发生"过烧"。在15~300 min内,板材内层和过渡区显微硬度值在30 min时达到峰值,而外层显微硬度值变化不明显;内层显微组织随着固溶时间的延长而变粗大,残留颗粒相数量在30 min后趋于平衡。通过T6热处理工艺:485℃固溶30 min+水淬+175℃时效8 h,7075/6009铝合金层状复合板材可获得较高的力学性能:抗拉强度为404 MPa,屈服强度为364 MPa,伸长率为15.3%;同比T6热处理的6009铝合金板材,其抗拉强度提高36%,屈服强度提高75%,但伸长率降低16%。  相似文献   

10.
对汽车覆盖件用6016铝合金冷轧板进行了不同固溶和预时效处理,采用金相显微镜、扫描电子显微镜观察了试样的微观组织,并对板材进行了力学性能测试。结果表明:在560℃的固溶温度下,保温时间从1 min增加到2min,板材的再结晶晶粒尺寸增大,T4P态和模拟烤漆硬化态板材的屈服强度、抗拉强度和伸长率都略微下降;固溶工艺为560℃1 min时,预时效温度从60℃增加至100℃,T4P态板材的屈服强度、抗拉强度先降低后增加,模拟烤漆硬化态板材的屈服强度、抗拉强度单调增加。6016铝合金冷轧板适宜的固溶和预时效工艺制度为:560℃1 min固溶处理+80℃6 h预时效处理。  相似文献   

11.
采用正交设计试验法研究了7AXX铝合金热处理工艺,结果表明:固溶温度为470℃保温时间为1 h时合金中的过剩相已得到充分溶解。双级时效中对于材料布氏硬度值的影响因子先后顺序应为:终时效温度、终时效时间、预时效时间、预时效温度。7AXX铝合金双级时效的四因素中终时效温度是影响最终性能的主要因素,随着合金终时效温度的升高材料硬度降低。经470℃×1 h固溶+110℃×4 h+150℃×8 h热处理后,合金抗拉强度为750.27 MPa;屈服强度为562.57 MPa;断后伸长率为26.43%。  相似文献   

12.
低压铸造铝合金轮毂T4热处理工艺探索   总被引:1,自引:0,他引:1  
通过对低压铸造铝合金轮毂进行固溶处理后分别进行人工时效、自然时效24 h、自然时效48 h后各部位进行力学性能检测,再分别对经过涂装后的成品进行力学性能检测和对比分析,探索低压铸造铝合金轮毂的T4热处理工艺.试验表明,T4(自然时效48 h)热处理比T6热处理的屈服强度降低了20%~30%、抗拉强度降低了5%~10%、硬度降低了10%~20%,伸长率提高了70%~100%,但经过涂装烘箱烘烤后合金的抗拉强度、屈服强度、硬度均有所提高,伸长率有所下降.就满足客户的力学要求而言,T4(自然时效24 h)热处理后比T6热处理更能满足客户的要求.  相似文献   

13.
采用正交试验法研究固溶温度和固溶时间、时效温度和时效时间4个因素对TC11钛合金力学性能和组织的影响。结果表明采用固溶温度960℃,固溶时间30 min,时效温度530℃,时效时间8 h的热处理制度,TC11钛合金可以得到最优的强塑性组合,抗拉强度1133 MPa,屈服强度1045 MPa,伸长率18.84%,断面收缩率56.49%。  相似文献   

14.
采用退火和固溶时效两种热处理方法对激光选区熔化(SLM)技术成形Al Si7Mg合金沉积态试样进行热处理试验,对热处理试样微观组织、拉伸性能和断口形貌进行分析。结果表明:沉积态试样微观组织主要由网状Si相和α-Al基体组成。经350℃/3 h/空冷(AC)退火后,在Al基体中形成尺寸约0.5μm的颗粒状Si析出相,横向试样抗拉强度和屈服强度由沉积态的435.78 MPa和299.23 MPa分别下降到210.35 MPa和152.01 MPa,伸长率由14.36%增加到30.83%。经535℃/3 h/水淬(WQ)+150℃/6 h/AC固溶/时效处理后,在Al基体中形成尺寸约2~3μm的颗粒状Si析出相,横向试样抗拉强度和屈服强度分别下降到349.27 MPa和309.67 MPa,伸长率增加到17.12%。本试验条件下,采用535℃/3 h/WQ+150℃/6 h/AC固溶时效热处理方法可获得较好的抗拉强度和伸长率匹配度。  相似文献   

15.
采用正交试验设计方法对半固态模锻ZL101铝合金车轮的热处理工艺进行了优化,并对车轮热处理后的组织性能进行了检测分析。结果表明,对车轮拉伸力学性能影响最明显的因素是时效时间,其次为固溶温度和固溶时间,最不明显的因素是时效温度。车轮的最优热处理工艺为535℃固溶6 h、180℃时效6 h。车轮热处理后的抗拉强度、屈服强度和伸长率分别为327.6 MPa、228.3 MPa和7.8%。  相似文献   

16.
姚鹏 《热处理》2008,23(4):52-55
对6061锻造铝合金轮毂进行了热处理工艺试验,结果表明,该铝合金轮毂的最佳热处理工艺为540℃保温79min,于70~72℃水中冷却1min,然后166℃时效350min。经该工艺处理后轮毂的抗拉强度可达到362~368MPa。  相似文献   

17.
研究了热处理工艺对6082铝合金力学性能的影响。结果表明,随着固溶温度的升高,合金的抗拉强度、硬度也随之升高,然后趋于平缓;断后伸长率先下降,随后升高。固溶时间对合金的抗拉强度、硬度以及断后伸长率影响较小。此外,随着时效温度的上升,合金的抗拉强度、硬度先上升至峰值,再略微下降;断后伸长率先下降至较低值,然后略微上升。合金在170℃时效后,其抗拉强度达到最高,为368 MPa,硬度达到115 HB。随着时效时间的延长,合金的抗拉强度、硬度以及断后伸长率变化较小。最后得出,6082铝合金在530~570℃固溶处理2~4 h,冷水冷却后,在170~190℃时效6~8 h,可获得最佳的综合力学性能,其抗拉强度可达360 MPa以上,断后伸长率大于12%。  相似文献   

18.
超高强超高韧铝合金的热处理工艺研究   总被引:5,自引:0,他引:5  
主要研究了三种铝合金,对每种铝合金采用不同的固溶和时效工艺进行对比,探讨热处理工艺对其力学性能的影响。以期找到铝合金的强度和塑性的最佳结合点,并确定各种铝合金的最佳热处理方案。通过力学性能测试和微观组织分析,结果表明,经优化后的复合固溶和特种峰值时效的有效结合能够提高合金的综合性能,同时获得较佳的强度和塑性。通过改进热处理方案,7208铝合金的屈服强度达到650N/mm^2、抗拉强度达到680N/mm^2、伸长率达到12%;7509铝合金的屈服强度达到675N/mm^2、抗拉强度达到722N/mm^2、伸长率达到13.5%;7012铝合金的屈服强度达到684N/mm^2、抗拉强度达到745N/mm^2、伸长率达到14%。  相似文献   

19.
研究了T6热处理对成形后6061铝合金构件组织和力学性能的影响。在经过不同的T6热处理后,通过电子拉伸实验研究构件力学性能的变化规律,利用光学显微镜、扫描电子显微镜和X射线衍射仪对热处理温度和时间对组织结构的影响进行分析。结果表明,固溶处理的合金中存在β-Al5FeSi和Mg2Si相。固溶处理温度和时间对合金的拉伸性能及塑性有显著影响。随着固溶温度及时间的增加,在560℃固溶4 h时抗拉强度及塑性最好,分别为211.62 MPa和和38.3%;相对于人工时效保温时间,人工时效温度对合金的拉伸性能及塑性的影响更大,在170℃人工时效10 h时力学性能最好,屈服强度和抗拉强度分别为145.26和363.30 MPa,伸长率为18.32%。  相似文献   

20.
沈君 《金属热处理》2012,37(9):119-122
采用差热分析(DSC)、室温拉伸、电导率测试、显微组织观察研究了不同固溶温度和固溶时间对7050铝合金厚板组织和性能的影响。结果表明,试验用合金的过烧温度约为486.3℃;随固溶温度升高,合金电导率下降,强度先升高后下降,热处理温度高于过烧温度后,伸长率迅速下降。在480℃×90 min条件下固溶处理时,T6时效态合金的抗拉强度、屈服强度和伸长率分别达到600 MPa、525 MPa和15.0%。合金适宜的固溶处理制度为480℃×(90~120)min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号