首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对2A70-0.5Ce0.25Ti铝合金叶片试件进行了模锻,并进行了不同始锻温度下的耐磨损性能和耐腐蚀性能的测试和分析。结果表明:随始锻温度从440℃升高到490℃,试样的磨损体积先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与440℃始锻温度的试样性能相比,480℃始锻后试样的磨损体积减小48.48%,腐蚀电位则正移78 m V。2A70-0.5Ce0.25Ti铝合金模锻叶片试样的始锻温度优选为480℃。  相似文献   

2.
采用不同的熔炼温度和浇注温度对Q345A-V含钒建筑耐候钢试样进行了感应熔炼铸造成型试验,并进行了耐腐蚀性能和耐磨损性能的测试与分析。结果表明:随熔炼温度和浇注温度的升高,试样的腐蚀电位先正移后负移,磨损体积则先减小后增大,耐腐蚀性能和耐磨损性能的变化趋势均为先提升后下降。与1480℃熔炼温度相比,1520℃熔炼温度下试样的腐蚀电位正移了81 m V,磨损体积减小了31.82%;与1420℃浇注温度相比,1480℃熔炼温度下试样的腐蚀电位正移了114 m V,磨损体积减小了48.28%。优化后Q345A-V含钒建筑耐候钢试样的感应熔炼工艺参数为:熔炼温度1520℃和浇注温度1480℃。  相似文献   

3.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

4.
采用不同的挤压温度和挤压速度对6063-0.4In0.3V铝合金机械外壳进行了挤压成形试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随挤压温度和挤压速度的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升再下降。在375℃和3 m/min挤压时,试样的磨损体积最小(17×10-3mm3),腐蚀电位最正(-0.779 V)。试样的挤压工艺参数优选为:375℃挤压温度和3 m/min挤压速度。  相似文献   

5.
采用不同的挤压温度对新型镁合金Mg-8Al-1.2Ti-0.3Zr试样进行了挤压试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随挤压温度的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升再下降。与300℃挤压温度相比,375℃挤压温度下试样的磨损体积减小了31.47%;腐蚀电位正移了57 mV。建筑模板用Mg-8Al-1.2Ti-0.3Zr镁合金的挤压温度优选为375℃。  相似文献   

6.
采用不同的始锻温度和终锻温度进行了F40-0.2Cr新型不锈钢的锻压试验,并进行了不锈钢法兰试样磨损性能和腐蚀性能的测试与分析。结果表明:在试验条件下,随始锻温度从975℃增大到1075℃或随终锻温度从800℃增大到900℃时,不锈钢试样的磨损性能和腐蚀性能均先升高后下降。不锈钢的始锻温度和终锻温度分别优选为1050、850℃。在其他条件相同的情况下,与975℃始锻相比,1050℃始锻时不锈钢试样的磨损体积减小45%,腐蚀电位正移151 m V;与800℃终锻试样相比,850℃终锻时不锈钢的磨损体积减小42%,腐蚀电位正移134 m V。  相似文献   

7.
采用不同的液态模锻工艺参数对汽车铝轮辋进行了成形,并进行了磨损和腐蚀性能的测试与分析。结果表明:比压为120 MPa时,与660℃浇注相比,720℃浇注试样的磨损体积减小了32%,腐蚀电位正移了116 m V。浇注温度为720℃时,与100 MPa成形的试样相比,120 MPa成形时试样的磨损体积减小了21%,腐蚀电位正移了92 m V。随浇注温度从660℃升高至740℃、比压从100 MPa升高至130 MPa,汽车铝轮辋的耐磨损性能和耐腐蚀性能均先提高后下降。适宜的浇注温度和比压分别为720℃和120 MPa。  相似文献   

8.
采用不同工艺对含锶新型建筑耐候钢09MnCuPTiSr进行了正火处理,并进行了试样耐腐蚀性能和耐磨损性能的测试与分析。结果表明:随正火温度从730℃提高到910℃(正火时间3 h),或随正火时间从1 h延长到5 h(正火温度870℃),耐候钢的耐腐蚀性能和耐磨损性能均先提高后下降。在正火时间3 h时,870℃正火的09MnCuPTiSr钢的腐蚀电位比730℃正移285 m V,磨损体积减小44%。在正火温度870℃时,3 h正火的09MnCuPTiSr钢的腐蚀电位比1 h的正移134 m V,磨损体积减小32%。正火温度优选为870℃,正火时间优选为3 h。  相似文献   

9.
采用不同淬火温度和回火温度对Cr2Ni4Mo V钢转子进行了热处理,并进行了耐磨损性能和热疲劳性能的测试与分析。结果表明:在试验条件下,随淬火温度和回火温度的提高,转子的耐磨损性能和热疲劳性能均先提高后下降;当淬火温度为860℃、回火温度为600℃时,转子的磨损体积最小,主裂纹深度和主裂纹宽度最小,耐磨损性能和热疲劳性能最佳。Cr2Ni4Mo V钢转子的热处理工艺参数优选为:淬火温度860℃、回火温度600℃。  相似文献   

10.
采用不同的浇注温度和保压比压对Al-10Si-3Cu-0.5V-0.2Ti铝合金机械外壳试样进行了压力铸造试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随浇注温度和保压比压的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨、耐腐蚀性能均表现为先提升再下降。在720℃浇注温度和60MPa保压比压下,试样的磨损体积最小,腐蚀电位最正。在这个条件下磨损体积为22×10~(-3)mm~3,腐蚀电位为0.846V。  相似文献   

11.
采用不同工艺对某新型挤压成型Mg-Mn-Ti合金壳体进行了退火热处理,并进行了磨损和腐蚀性能的测试与分析。结果表明:随热处理温度从260℃提高到380℃或热处理时间从2 h延长到8 h,合金壳体的磨损和腐蚀性能都先提高后下降。与260℃热处理相比,320℃热处理时合金壳体的磨损体积减小44%、腐蚀电位正移182 m V;与2 h热处理相比,5 h热处理时机械壳体的磨损体积减小41%、腐蚀电位正移162 m V。合金壳体的热处理温度和时间分别优选为320℃、5 h。  相似文献   

12.
采用不同工艺对20CrMnTiV机械重载主轴进行了热处理,并测试和分析了试样耐磨损性能和冲击性能。结果表明,随淬火温度、淬火时间、回火温度或回火时间不断增加,20CrMnTiV机械重载主轴的磨损体积先减小后增大,冲击吸收功先增大后减小,试样耐磨损性能和冲击性能呈现先提高后下降。主轴的最佳热处理工艺参数为:900℃淬火温度、90min淬火时间、580℃回火温度和3.5h回火时间。  相似文献   

13.
采用不同的温度进行了9Cr18Ce不锈钢机械轴承套圈的锻造,并测试与分析了耐磨损和耐腐蚀性能。结果表明:随始锻温度从1100℃增加至1175℃,终锻温度从915℃增加到975℃,材料的磨损体积先减后增,腐蚀电位先正移后负移。1145℃始锻的试样磨损体积比1100℃始锻的减小40.6%,腐蚀电位正移了0.091V;与915℃终锻相比,960℃终锻使磨损体积减小34.5%,腐蚀电位正移了0.087 V。新型不锈钢机械轴承套圈的锻造温度优选为:1145℃始锻温度、960℃终锻温度。  相似文献   

14.
采用不同的锻造温度对机械紧固件用新型钛合金进行了锻造试验,并进行了耐磨损性能和高温抗氧化性能的测试与分析。结果表明:随始锻温度从1020℃升高至1100℃,试样的磨损体积和单位面积质量增重先减小后增大,与1020℃始锻时相比,始锻温度为1080℃时试样的磨损体积减小了35. 48%,单位面积质量增重减小了36. 36%。随终锻温度从800℃升高至880℃,试样的磨损体积和单位面积质量增重先减小后增大,与800℃终锻时相比,终锻温度为860℃时试样的磨损体积减小了42. 86%,单位面积质量增重减小39. 13%。机械紧固件用新型钛合金Ti-3Al-5Mo-4. 5V-1Sr-0. 5Ce的始锻温度优选为1080℃、终锻温度不低于860℃。  相似文献   

15.
采用不同工艺对汽车钛合金气阀进行了铸造,并对其进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:与常规离心铸造优化工艺相比,超声辅助离心铸造的气阀磨损体积减小42%,腐蚀电位正移0.138 V,耐磨损性能和耐腐蚀性能均得到显著提高。汽车钛合金气阀的铸造工艺优选超声辅助离心铸造工艺。  相似文献   

16.
在不同的浇注温度和压射比压下进行了ADC12-0.15V0.03In铝合金箱盖试样的压铸成形,并进行了耐磨损性能和耐腐蚀性能的测试、对比和分析。结果表明:随浇注温度的升高和压射比压的增大,箱盖试样的磨损体积和质量损失率均先迅速减小再缓慢增大,耐磨损性能和耐腐蚀性能先迅速提升后略有下降。在685℃浇注温度和95 MPa压射比压下,压铸试样的磨损体积和质量损失率最小,耐磨损性能和耐腐蚀性能最好。箱盖试样的压铸工艺参数优选为:685℃浇注温度和95 MPa压射比压。  相似文献   

17.
始锻温度是锻造镁合金的一个重要工艺参数。采用不同的始锻温度进行了MB5-Ce镁合金锻造,并进行了腐蚀性能和磨损性能的测试与分析。结果表明:随始锻温度从260℃增至340℃,合金的腐蚀电位先正移后负移,磨损体积先减小后增大;合金耐腐蚀性能和耐磨损性能先提升后下降。新型汽车镁合金的始锻温度优选为300℃。  相似文献   

18.
采用不同的挤压温度对Mg-8Al-0.6Zn-0.5Ti-0.3V新型镁合金机械外壳件进行挤压成形试验,并取样进行冲击性能和耐腐蚀性能测试。结果表明:随挤压温度升高,挤压件试样冲击吸收功先增大再减小,腐蚀电位先正移后逐渐负移,单位面积腐蚀失重先减小后增大,冲击性能和耐腐蚀性能先提升后下降。与300℃挤压温度相比,380℃挤压温度试样的冲击吸收功增大了58.97%,腐蚀电位正移了34 mV,单位面积的腐蚀失重减小了37.8%。Mg-8Al-0.6Zn-0.5Ti-0.3V新型镁合金机械外壳件的挤压温度优选为380℃。  相似文献   

19.
采用不同的浇注温度、压射速度和压射比压对汽车外壳零件用新型镁合金Mg-9Al-0.8Zn-0.5V-0.3In试样进行了铸造试验,并进行了耐腐蚀性能的测试与分析。结果表明:随浇注温度、压射速度和压射比压的增加,试样的腐蚀电位先正移后负移,耐腐蚀性能先提升再下降。与660℃浇注温度相比,700℃浇注温度下试样的腐蚀电位正移了34m V;与50 m/min压射速度相比,200 m/min下试样的腐蚀电位正移了28 m V;与80 MPa压射比压相比,120 MPa压射比压下试样的腐蚀电位正移了42 m V。汽车外壳用镁合金的压铸工艺参数优选为:700℃浇注温度、200 m/min压射速度、120 MPa压射比压。  相似文献   

20.
为了优化汽车空调支架用镁合金的挤压工艺,本文采用不同的工艺参数对试样进行了挤压。结果表明:随挤压温度从300℃增加至400℃、挤压速度从1 m/min增加至5 m/min,试样的强度先增大后减小,断后伸长率先减小后增大,腐蚀电位先正移后负移,试样的耐腐蚀性能先提高后下降。与300℃相比,360℃挤压使试样抗拉强度和屈服强度分别增大了22%、26%,断后伸长率减小了23%,腐蚀电位正移66 m V;与1 m/min相比,4 m/min挤压使试样抗拉强度和屈服强度分别增大了17%、20%,断后伸长率减小了15%,腐蚀电位正移51 m V。Mg-5Al-1Zn-0.3Ti镁合金的挤压温度和挤压速度参数分别优选为360℃和4 m/min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号