首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
首次采用Al-5.6Si-25.2Ge钎料对Cu/Al异种金属进行了炉中钎焊,分别从钎料的熔化特性、铺展润湿性、Cu侧界面组织以及钎焊接头强度等方面进行了系统研究,并与Zn-22Al钎料钎焊结果进行对比。结果表明,Al-5.6Si-25.2Ge钎料具有较低的熔化温度(约541℃),同时在Cu、Al母材上均具有良好的铺展润湿性。Al-5.6Si-25.2Ge/Cu界面由CuAl_2/CuAl/Cu_3Al_2三层化合物组成,其中CuAl和Cu_3Al_2呈层状,厚度较薄,仅为1~2 mm;CuAl_2呈胞状,平均厚度约为3 mm。Zn-22Al/Cu界面结构为CuAl_2/CuAl/Cu_9Al_4,其中CuAl_2层平均厚度高达15 mm。接头抗剪切强度测试结果表明,Zn-22Al钎料钎焊Cu/Al接头抗剪切强度仅为42.7 MPa,而Al-5.6Si-25.2Ge钎料钎焊Cu/Al接头具有更高的抗剪切强度,为53.4 MPa。  相似文献   

2.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

3.
采用固定间隙超声波辅助钎焊工艺制备了Zn-14Al过共晶钎料钎焊Cu/Al异质金属接头,研究了在不同钎焊温度和钎焊时间时Cu/Al钎焊接头显微组织的演变规律。研究结果表明:无钎剂超声波辅助钎焊接头冶金结合良好,钎焊温度至410℃时,铜界面润湿良好,产生不连续CuZn_5层;随着温度进一步升高,界面层连续化,并逐步向Al_(4.2)Cu_(3.2)Zn_(0.7)相转变;440℃时,Cu界面层完全转变为Al_(4.2)Cu_(3.2)Zn_(0.7)相;同时发现随着钎焊时间的延长,界面CuZn_5相也会向Al_(4.2)Cu_(3.2)Zn_(0.7)相转变。  相似文献   

4.
文中采用Zn-Al22药芯焊丝实现了4 mm厚5083铝合金与E36钢异种材料的TIG熔钎焊。重点研究了焊接电流对铝/钢熔钎焊接头成形、界面金属间化合物以及抗拉强度的影响。结果表明,熔钎焊接头钢侧界面生成了η-Fe_2Al_5Zn_x金属间化合物层,其中还分布有少量δ-FeZn_(10)相;随着焊接电流逐渐增大,焊缝金属在E36钢表面的润湿铺展逐渐提升,熔宽逐渐增大,η-Fe_2Al_5Zn_x金属间化合物层增厚,δ-FeZn_(10)相也随之增多;当焊接电流超过120 A时,界面层生成Fe-Zn金属间化合物层;较薄的η-Fe_2Al_5Zn_x金属间化合物层和分布在η-Fe_2Al_5Zn_x层中的δ-FeZn_(10)有助于提高接头抗拉强度;铝/钢熔钎焊接头均断裂于钢侧界面,当焊接电流为110 A时,接头抗拉强度达到最大值120 MPa。  相似文献   

5.
以3种药芯铝钎料对Cu/Al异种金属进行了火焰钎焊,研究了钎焊接头的力学性能及反应物.通过测试和分析3种钎焊接头的强度、组织和显微硬度,从中选取综合性能较优的试样ZAAg2;采用扫描电镜(SEM)、X射线衍射仪(XRD)、X射线能谱仪(EDS)等进一步分析该钎焊接头的组织及反应物.结果表明:性能较优钎焊接头ZAAg2接头强度高达75 MPa,接头的主要断裂形式为沿晶脆性断裂,断裂主要产生在CuAl,CuAl2,Al4Cu9等脆性组织与α - Al基体的界面处.钎料与母材发生界面反应,钎缝中靠近铝侧生成α-Al固溶体,靠近铜侧生产CuAl,CuAl2,Al4 Cu9等脆性相.  相似文献   

6.
使用不同成分的Zn-Al钎料对铜铝异种金属进行火焰钎焊,研究其力学性能。利用光学显微镜、扫描电镜和能谱研究不同Zn-Al钎料对Cu/Al钎焊接头钎焊性、力学性能及显微组织的影响。结果表明:随着Al含量的增加,Zn-Al钎料在Cu和Al上的铺展面积逐渐增大。当钎料中Al含量为15%时,Cu/Al接头的抗剪强度达到最大值88MPa;随着组织的变化,钎缝硬度值呈现HV122到HV515不等的分布。另外,钎缝组织的成分主要为富Zn相和富Al相,但是当钎料中Al含量为2%和15%以上时,靠近Cu侧的界面处会分别形成CuZn3和Al2Cu两种完全不同的金属间化合物。研究Zn-Al钎料中铝含量对Cu/Al接头界面化合物类型的影响。  相似文献   

7.
采用双熔池TIG熔钎焊方法,对不锈钢与铝合金焊接接头进行了试验制备,研究了Nocolok复合钎剂中添加Cu时,熔钎焊接头界面组织及力学性能的变化。研究发现,采用含Cu的复合钎剂,熔钎焊层致密性提高,与基体界面结合良好,熔钎焊层的组织形态得到改善;熔钎焊层所形成的金属间化合物中,靠近不锈钢侧由原来的Fe_2Al_5相转变为含Cu的α-Fe相,在铝合金侧则由原来的絮状FeAl_3~+Al共晶相转变为锯齿状的Fe_4Al_(13)相,该结构相中的部分Fe原子被Cu原子取代,形成(Fe,Cu)_4Al_(13)。力学性能测试表明,随着复合钎剂中Cu含量增加,熔钎焊接头的剪切强度先增后降;与纯复合钎剂相比,接头剪切强度明显提高,以Cu含量为15wt%时熔钎焊接头的强度最高。  相似文献   

8.
利用超声波辅助钎焊工艺方法对Cu/Sn/Cu结构进行钎焊实验,研究超声波辅助作用下Cu/Sn固-液界面金属间化合物(IMCs)的形成与演变过程。结果表明:无超声作用时界面处Cu-Sn金属间化合物形貌逐渐由平直状转变为凹凸的扇贝状,其中Cu_6Sn_5的形成主要受扩散控制,而Cu_3Sn层的形成则是由反应控制。施加超声波后,通过观察不同超声条件下Cu-Sn金属间化合物形貌的微观结构演变,提出破碎-溶解模型。通过改变超声时间来控制界面Cu-Sn金属间化合物的厚度,从而改善钎焊接头性能。  相似文献   

9.
采用Zn-2%Al(质量分数)药芯焊丝对5052铝合金和H62黄铜进行TIG熔钎焊搭接试验,并对接头显微组织、界面层结构及力学性能进行分析。结果表明:Zn-2%Al药芯焊丝在黄铜母材表面润湿性良好,能够获得较好的铝/黄铜熔钎焊接头。在黄铜侧过渡区形成块状和条状的Al Cu脆性金属间化合物相,同时在黄铜侧界面处形成Cu9Al4、Cu Zn金属间化合物层。随焊接热输入的增大,界面层厚度先增大后减小,接头拉伸载荷也是先增大后减小。焊缝中心区及界面层的显微硬度高于铝和黄铜母材的。接头拉伸时断于黄铜侧界面区,且断口为解理断裂。  相似文献   

10.
采用不同的送丝速度对5056铝合金和ST04Z热镀锌钢进行激光填丝熔钎焊对接试验,焊接材料为Al Si12焊丝,用SEM、EDS、XRD、显微硬度计和拉伸试验机对熔钎焊接头的微观组织和力学性能进行研究。结果表明:在适当的焊接参数下,使用激光熔钎焊可实现良好的单面焊双面成形,获得铺展性良好的对接接头。在铝合金侧母材与填充金属混合后形成焊缝,焊缝区与镀锌钢的界面处不同位置形成了厚度不均的金属间化合物层。熔钎焊接头主要的金属间化合物为脆硬的Fe_2Al_5、Fe_4Al_(13)。随着送丝速度的增加,接头铺展性变好,接头中间位置的金属间化合物层厚度先减小后增加,接头抗拉强度先增加后减小。焊接接头最大抗拉强度可达143 MPa,拉伸断裂在铝侧的熔合区,呈准解理断裂。  相似文献   

11.
通过一种超声辅助钎焊连接方法,采用Zn基钎料对TC4钛合金和55%Si Cp/Al复合材料进行了钎焊连接。通过扫描电镜、能谱议及电子万能试验机对钎焊接头的微观组织、界面成分及接头的剪切强度进行了分析研究。结果表明,超声辅助钎焊连接方法可以有效实现钛合金与55%Si Cp/Al复合材料的冶金连接。接头中复合材料侧界面氧化膜完全消失,并且基体中的小尺寸Si C颗粒向钎缝中大量迁移。而在钛合金侧界面处只生成了一种金属间化合物Ti Al3,平均厚度为2~4μm。在420℃焊接时接头的最高剪切强度可达到167 MPa,其试样接头断裂于金属间化合物Ti Al3和55%Si Cp/Al复合材料的界面区附近。  相似文献   

12.
采用冷轧复合法制备Cu/Al/Cu 3层复合板,研究不同退火温度对Cu/Al/Cu复合板结合性能的影响。采用光学显微镜(OM)及扫描电镜(SEM)观察界面过渡层的微观组织形貌,采用EDX分析界面物相成分,采用室温拉伸实验检测结合界面的结合强度。结果表明,退火温度越高,界面扩散层越明显,扩散层厚度越大,增长的速度越快;随着温度升高,复合界面处生成金属间化合物Cu_9Al_4、CuAl_2和CuAl。退火温度达到550℃时,界面层还会生成Cu_4Al_3和Cu_3Al_2。界面的结合强度随着退火温度的升高先上升后下降,最后趋于稳定。冷轧复合法制备的Cu/Al/Cu复合板最佳退火温度为350℃。  相似文献   

13.
设计并采用Zn-Al-Ti系列钎料对Cu和Al异种金属实施了钎焊,并对Zn-22Al-xTi/Cu界面处的相组成和金属间化合物形貌进行了分析。结果表明:在Zn-22Al中添加0.01%至0.05%的Ti可以显著细化钎料组织,而且Zn-22Al-0.03Ti在Cu基板上的铺展面积比Zn-22Al高出60.4%,但Ti的添加会提高Zn-22Al钎料的熔点和熔化区间。另外,在钎料中添加微量的Ti可以优化Cu/Al接头中Cu侧界面化合物的组织并减小其厚度。相比Zn-22Al钎料,Zn-22Al-0.03Ti钎焊所得Cu/Al接头强度要高出13.4%,而且接头断裂位置由化合物层转移至钎料内部。X射线衍射结果显示,钎焊过程中有CuAl2,Cu9Al4,CuZn 3种化合物产生于钎料与Cu基板界面处  相似文献   

14.
通过扫描电镜、能谱分析和X射线衍射等方法研究了火焰钎焊时Zn-xAl钎料的润湿性能、铝/钢钎焊接头界面显微组织、金属间化合物层以及接头抗剪强度.结果表明,Zn-xAl钎料配合改性CsF-RbF-AlF3钎剂,可以有效地去除母材表面氧化膜,从而提高钎焊接头力学性能.随着Al元素含量增加,钎料铺展性和填缝性随之提高,但是钎焊接头强度先升后降,Al元素含量为15%时,钎焊接头力学性能最佳.钎焊接头显微组织分析结果表明,金属间化合物主要为Fe4Al13相. Zn-xAl钎料中Al元素含量较低时,界面层由富锌相和Fe4Al13相组成.随着Al元素含量的增加,在Zn-25Al钎焊接头界面出现第二层金属间化合物Fe2Al5相.  相似文献   

15.
在573~773 K温度范围内对铜铝冷轧复合板进行退火处理。观察、分析了铜铝固态界面金属间化合物的演变行为,从扩散动力学的角度分析了界面相的形成机制和长大机制。结果表明:退火处理后试样界面反应层由靠近Al侧的Al_2Cu、靠近Cu侧的Al_4Cu_9以及处于二者之间的AlCu三层金属间化合物构成,其形成序列为Al_2Cu、Al_4Cu_9、AlCu;界面金属间化合物生长控制机制由前期的反应控制和后期的扩散控制两部分构成;退火温度越高,反应机制控制阶段终了时间越早。  相似文献   

16.
采用Ag Cu Ti钎料实现了Al_2O_3陶瓷与Fe-Co-Ni合金的钎焊连接,并调查了不同钛含量的钎料对Al_2O_3/Ag-Cu-Ti/Fe-Ni-Co钎焊接头机械性能和微观组织结构的影响。利用扫描电镜(SEM),X射线能量谱仪(EDS),X射线衍射仪(XRD)及电子万能试验机研究了钎焊接头的力学性能和微观组织结构。结果表明,钛含量的增加明显提高Ag-Cu-Ti钎料与Al_2O_3陶瓷的相互作用,在Al_2O_3/Ag-Cu-Ti界面生成一层由Ti-Al和Ti-O化合物组成的反应层。Al_2O_3/Ag-Cu-Ti/Fe-Ni-Co钎焊接头的抗拉强度随钛含量的增加而增加,当钛含量提高到8%(质量分数)时,抗拉强度达到最大值78 MPa。通过微观组织结构分析发现,采用AgCu4Ti在890℃保温5 min的条件下可以获得较好的钎焊接头,典型接头的微观组织结构为Al_2O_3/TiAl+Ti_3O_5/NiTi+Cu_3Ti+Ag(s,s)/Ag(s,s)+Cu(s,s)+(Cu,Ni)/Fe-Ni-Co。采用Ag-Cu-8Ti获得的钎焊接头的界面反应层与Ag-Cu-4Ti差异不大,但反应层稍微增厚,并伴有TiO和Ti_3Al在Al_2O_3/Ag-Cu-Ti界面生成。  相似文献   

17.
采用PLC控制固定间隙超声波辅助Cu/Al异质金属的钎焊工艺,在钎焊温度为380、420和460℃下制备Al/Zn-3Al/Cu钎焊接头,观察了不同温度超声钎焊时接头的显微组织与力学性能变化。结果表明,当钎焊温度为380℃时,钎缝层由Zn-Al共晶、α-Al树枝状晶和CuZn_5相组成;当钎焊温度为420和460℃时,钎缝层由α-Al树枝状晶、CuZn_5相和Al_(4.2)Cu_(3.2)Zn_(0.7)相组成;在钎焊温度为420℃时,金属间化合物层厚度为1.9μm,扩散层厚度1.3μm,整个界面层厚度为三种钎焊温度下的最低值,此时取得钎焊接头抗拉强度最大值。  相似文献   

18.
使用Ag粉、CuO粉、Ti粉、Zr粉等成分配置成的活性钎料在空气气氛中采用活性钎焊方法成功钎焊Al2O3陶瓷与金属Ni,并借助扫描电镜(SEM)、能谱分析仪(EDS)和X射线衍射仪技术(XRD),时界面元素分布及反应产物加以分析和研究.试验结果表明.在活性钎焊接头界面中,AS在钎焊接头中部区域呈聚集态分布,Cu元素的分布显示CuO在该区域也有所集中,但也有大量的Cu与Ti,zr一起出现在接头界面处,说明这些元素与陶瓷中的成分发生界面反应形成新的产物.XRD图谱结果显示Cu,Ti,Al,O发生反应在界面处生成复杂化合物.通过对接头界面组织微观分析得知,接头中存在2种反应产物及金属间化合物.由此可以推断,接头界面组织结构为Al2O3/AlTi+CuAlO2/TiAg+Ti3Cu+AgZrz+Ag+CuO/Ni.  相似文献   

19.
采用电镀工艺在Zn-27Al钎料表面镀Ni制备出复合锌基钎料,在氮气的环境中采用电阻炉用复合锌基钎料和Zn-27Al钎料对Cu与Al进行钎焊试验,运用金相显微镜、电子探针、X射线衍射仪分析接头微观组织,通过拉伸试验评定焊接接头力学性能。结果表明:复合钎料钎缝中Al_2Cu_3偏聚在Cu侧、α-Al固溶体偏聚在Al侧的现象消失,组织分布更加均匀、且有新的CuZn_5+Ni_3Al复合相生成;Ni层能够有效地阻止Al和Cu的扩散,从而降低低熔点脆性化合物Al_2Cu的生成。同一钎焊条件下,复合锌基钎料钎焊接头的抗拉强度高于普通钎料,分别达到23. 79 MPa和31. 73 MPa。  相似文献   

20.
通过向Ag Cu共晶钎料中添加nano-Al2O3增强相(2%,质量分数)并采用高能球磨的方法获得了Ag Cu+nano-Al2O3复合钎料(Ag Cu C钎料)。采用Ag Cu C钎料实现了TC4合金与Al2O3陶瓷的高质量钎焊连接,确定了TC4/Ag Cu C/Al2O3钎焊接头的典型界面组织结构为:TC4/α-Ti+Ti2Cu扩散层/Ti3Cu4层/Ag(s,s)+Ti3Cu4+Ti Cu/Ti3Cu4层/Ti3(Cu,Al)3O层/Al2O3。Nano-Al2O3的添加抑制了钎缝中连续的Ti-Cu化合物层的生长,同时在钎缝中形成了颗粒状Ti-Cu化合物相增强的Ag基复合材料,改善了钎焊接头的界面组织。随着钎焊温度的升高,各反应层厚度逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag基复合材料组织逐渐细小。当钎焊温度T=920℃,保温时间t=10 min时接头抗剪强度达到最大为67.8 MPa,典型断口分析表明:压剪过程中,裂纹起源于钎角处并沿钎缝扩展后转入Al2O3陶瓷,最终在Al2O3陶瓷母材侧发生断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号