首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-3500热模拟试验机、光学显微镜和扫描电镜等研究了低碳高强舰船用钢的连续冷却转变曲线(CCT曲线)及热轧后终冷温度对组织性能的影响。结果表明,试验钢连续冷却转变只发生了铁素体、贝氏体相变。试验钢轧后快速冷却至不同终冷温度立即空冷工艺下,室温组织主要为贝氏体和多边形铁素体,且随着终冷温度降低,贝氏体的含量增多。与直接空冷至室温相比,随着终冷温度提高,试样的强度呈先降低后增加趋势,然而,终冷温度提高到650 ℃时,试样强度却降低。终冷温度为600 ℃时,屈服强度和抗拉强度最高,分别为644.28 MPa和为679.71 MPa,-20 ℃的冲击吸收能量最优,为112 J。  相似文献   

2.
采用光学显微镜、扫描电镜及力学性能实验等研究了控轧控冷工艺对X70级管线钢的组织与力学性能的影响。结果表明:不同终轧温度下X70管线钢的显微组织主要由多边形铁素体、贝氏体和少量的珠光体组成,且随着终轧温度的升高,抗拉强度与屈服强度降低,硬度下降,冲击韧性提高,但屈强比变化不大,并且落锤性能较差;随着终轧温度的升高,晶粒尺寸逐渐增大,铁素体体积含量增多。在不同的终冷温度下,X70管线钢的显微组织主要由多边形铁素体和贝氏体组成,并且随着终冷温度的升高,抗拉强度大幅度降低,屈服强度则呈M形波动,硬度呈线性降低,冲击吸收能量大幅度升高且落锤性能较好,屈强比缓慢升高;随着终冷温度的升高,晶粒度等级基本保持稳定,铁素体含量呈线性增加。该大变形管线钢最优的轧制工艺为控制终轧温度为840℃,终冷温度为450℃。  相似文献   

3.
采用力学性能测试、光学显微镜、透射电镜等方法,研究了终冷温度对低屈强比高强钢组织和性能的影响。结果表明,随着终冷温度的降低,钢的屈服强度和抗拉强度增加,伸长率下降,而屈强比和冲击吸收能量则没有明显的变化,但总体呈现出下降趋势。试验钢的组织主要由板条贝氏体、粒状贝氏体、少量铁素体和一些M/A岛组成,终冷温度越低,板条贝氏体宽度越窄,铁素体组织也更加细小。M/A岛体积分数的增加有利于提高强度和降低屈强比,但对冲击性能不利。  相似文献   

4.
利用Gleeble-2000D热模拟机、550 mm轧机、扫描电镜等研究了终轧温度和冷却工艺对铁素体贝氏体双相钢组织和性能的影响。首先,在水冷-空冷-水冷模式下研究终轧温度对显微组织和力学性能影响,结果表明:随终轧温度降低,基体组织带状加剧,且铁素体形态由多边形转变为沿轧制方向变形的椭圆形;当终轧温度低于800℃时,铁素体比例明显增加,贝氏体比例下降,抗拉强度下降。其次,在850℃的终轧温度下研究了冷却工艺对显微组织和力学性能的影响,结果表明:当终轧后冷却方式为水冷时,基体组织以准多边形铁素体和针状铁素体为主,伸长率较低;终轧后采用水冷-空冷-水冷方式冷却时,基体组织以块状铁素体和贝氏体为主,伸长率较高。  相似文献   

5.
以复合添加Nb,V和Ti的低碳微合金钢为研究对象,采用热模拟试验机模拟高温轧制+超快速冷却+缓冷工艺,采用OM,HRTEM和显微硬度计等对超快冷至不同温度实验钢的组织转变和析出规律进行研究.结果表明,随着超快冷终冷温度的升高,显微组织由贝氏体向珠光体和铁素体转变,碳化物形核位置从贝氏体转变为铁素体,铁素体中的析出物密度大于贝氏体中的,且在620℃达到最大.超快冷至不同温度时析出物的尺寸均小于10 nm,纵横比均接近于1,即析出物形态更接近于球形,且随终冷温度的降低,析出物尺寸逐渐减小.利用Orowan机制计算了析出强化增量,得出在620℃析出强化对屈服强度的贡献最大,可达到25.6%.  相似文献   

6.
终冷温度对X100管线钢组织与性能的影响   总被引:1,自引:3,他引:1  
通过光镜、透射电镜、背散射电子衍射技术(EBSD)、拉伸与(-20℃)冲击试验,研究了不同终冷温度对X100管线钢组织、性能的影响规律。结果表明,随终冷温度降低,针状铁素体(AF)、粒状贝氏体(GB)组织逐渐减少,板条贝氏体含量逐渐增加,钢板强度增高,塑韧性降低,当终冷温度在380℃左右时,少量AF、GB组织分割原奥氏体晶粒,板条贝氏体束的有效晶粒尺寸得到细化,钢板具有最优的综合力学性能,屈服强度为775 MPa,抗拉强度为855 MPa,伸长率为16.6%,-20℃冲击功为218 J,各项性能指标均满足X100管线钢的要求。  相似文献   

7.
采用光学显微镜和万能拉伸试验机等研究了轧制过程中的开冷温度和终冷温度对Q550D钢板的显微组织、铁素体和M/A岛占比以及室温拉伸性能的影响.结果表明,不同开冷温度和终冷温度下,试样中M/A岛的形态主要为颗粒状、块状和断续分布的长条状,且M/A岛主要分布在贝氏体或者铁素体的相界处;试样中M/A岛体积分数会随着开冷温度或终...  相似文献   

8.
使用真空感应炉冶炼了试验钢,采用不同的控制轧制+超快冷工艺将试验钢轧成12 mm厚的钢板,对钢板金相组织进行了观察,对拉伸和冲击性能进行了检测。结果表明,试验钢组织均为贝氏体+铁素体+少量M-A岛;随着开冷温度升高,铁素体含量减少,抗拉强度和屈服强度明显提高,屈强比略有增加,伸长率降低,冲击功显著提高;随着终冷温度升高,组织中板条贝氏体转变为粒状贝氏体,M-A岛尺寸和含量增加,抗拉强度和屈服强度降低,屈强比显著降低,冲击功先提高后略有降低;随着冷却速率提高,铁素体含量减少,贝氏体板条细化,抗拉强度逐渐升高,屈服强度先升高后降低,屈强比小幅波动,伸长率先下降后保持不变,冲击功略有提高。  相似文献   

9.
安文强  邓鹏 《轧钢》2017,34(4):36-38
为满足客户对叉车门架型钢20MnSiV性能的要求,在不添加合金元素的条件下,研究了不同终轧温度和快冷工艺对20MnSiV钢组织性能的影响。结果表明:在950 ℃终轧,然后以40 ℃/s的冷却速率将试样冷却到600 ℃左右,最后空冷,实验钢组织为粒状贝氏体+少量针状铁素体,其强度和韧性均有较大幅度提高,综合力学性能良好。  相似文献   

10.
试验钢采用低碳Nb、Ti、Ni、Cu、Mo等合金化设计理念进行X100管线钢化学成分设计,用真空感应电炉冶炼,并经试验轧机TMCP工艺控制轧制,轧后弛豫并在机后快速冷却线中进行快速冷却。冷却后采用显微分析方法和力学性能测试等手段研究终冷温度对试验钢微观组织和性能的影响。结果表明:随着终冷温度的降低试验钢显微组织的变化规律是由多边形铁素体向准多边形铁素体、粒状贝氏体、贝氏体铁素体、马氏体型转变。在418 ℃时出现板条状贝氏体组织且随着终冷温度降低,组织中板条状贝氏体的含量增加,贝氏体板条束的直径变小板条间距变窄,提高了试验钢的强度和韧性指标。301 ℃时出现马氏体组织,试验钢的强韧性有所降低。未发现终冷温度对原始奥氏体晶粒尺寸有影响,因为影响试验钢原始奥氏体晶粒度的主要因数为控轧工艺。  相似文献   

11.
终冷温度对不同成分700MPa级耐候钢组织和性能的影响   总被引:1,自引:1,他引:0  
针对两种不同成分的700MPa级超高强度耐候钢,利用金相显微镜、扫描电镜及透射电镜进行了组织观察,检验了硬度,研究了终冷温度在550~680℃之间变化对试验钢组织和性能的影响.结果表明,在其它工艺相同的情况下,终冷温度控制在约600℃,两种成分的试验钢均可得到良好的组织和性能;随着终冷温度的降低,钢的显微组织由多边形铁素体和少量珠光体转变为铁素体和贝氏体为主,铁素体基体上均匀分布着细小析出相;添加Mo的试验钢贝氏体含量高;硬度呈现先升高后降低的趋势.  相似文献   

12.
采用轧后空冷+超快速冷却的方式,研究了开冷温度对热轧铁素体/贝氏体(F/B)双相钢组织性能的影响。结果表明:开冷温度显著影响F/B双相钢的显微组织和性能。开冷温度由747 ℃降至700 ℃时,铁素体体积分数由17.3%增至85.7%,铁素体晶粒尺寸由3.3 μm粗化至3.6 μm,贝氏体中析出的碳化物含量增加。同时,F/B双相钢的屈服强度从594 MPa降至475 MPa,抗拉强度从648 MPa降至532 MPa,伸长率从17.7%升至34.3%,扩孔率从36.4%提高至82.8%。因此,为实现热轧F/B双相钢力学性能和扩孔性能的平衡,开冷温度应控制在730~700 ℃。  相似文献   

13.
通过控轧控冷工艺的模拟,并采用显微组织观察、拉伸性能测试方法,研究了开冷和终冷温度对Q550GJ建筑高强抗震钢组织和力学性能的影响。结果表明:不同开冷和终冷温度下Q550GJ钢的显微组织均为粒状、板条状贝氏体相,还有少量细小铁素体和M/A岛。随着开冷温度的降低,组织中铁素体体积百分比明显增加,M/A岛也有一定比例增加,钢的屈强比逐渐下降。随着终冷温度的降低,组织中铁素体体积百分比略有下降,M/A岛有一定幅度的增加,钢的屈强比逐渐增加。合理的工艺参数是开冷温度750℃、终冷温度390℃。在这个工艺参数下,可以得到综合性能较好的高强度抗震钢。  相似文献   

14.
胡平  章传国  郑磊 《金属热处理》2015,40(3):140-146
研究了冷却工艺和化学成分对一种经济型X100钢的组织与力学性能的影响。结果表明,随着终冷温度从500~550 ℃降低至200~300 ℃,同时冷速从20 ℃/s提高至45 ℃/s,规定总延伸强度Rt0.5和抗拉强度提高,可以达到X100强度级别制管的性能要求。随着终冷温度的降低和冷速的提高,组织中板条贝氏体含量的增加是强度提高的原因。高终冷温度、低冷速时,钢中加入Mo、Cr可以增加板条贝氏体从而提高规定总延伸强度;低终冷温度、高冷速时,Mo、Cr对屈服强度的影响不明显。另外,低终冷温度、高冷速下获得的X100试验钢具有优异的冲击性能和DWTT性能,-40 ℃冲击吸收能量大于240 J,-30 ℃全壁厚试样DWTT剪切面积比大于85%。  相似文献   

15.
利用热模拟方法测定低屈强比耐火耐候钢不同速率冷却后的组织。对比轧后弛豫工艺与未弛豫工艺以及终冷温度对试验钢性能的影响,利用光学显微镜、扫描电镜、透射电镜分析不同工艺对钢轧后显微组织的影响。结果表明,随冷却速度的增加,钢板组织由多边形铁素体变为针状铁素体+粒状贝氏体复相组织;由于弛豫处理过程中过冷奥氏体部分转变为多边形铁素体,钢板屈服强度和屈强比均下降;随着终冷温度的降低,钢板的屈服强度和屈强比上升,与钢中针状铁素体的细化与M/A组元的弥散强化有关;轧后直接水冷,并控制终冷温度至500~560℃,可获得高强度与低屈强比的良好匹配。  相似文献   

16.
研究了开冷温度、终冷温度和轧制工艺对低碳高锰建筑钢板常温拉伸性能、-40℃冲击功、屈强比和显微组织的影响,分析了工艺参数与性能之间的关系和作用机理。结果表明,随着开冷温度的降低,屈强强度、抗拉强度和-40℃冲击功逐渐降低,而断后伸长率逐渐增加,适当降低开冷温度有助于降低材料的屈强比;随着终冷温度的降低,屈服强度和抗拉强度逐渐升高,而断后伸长率和-40℃冲击功逐渐减小,屈强比上升。试验钢具有较高强塑性的同时具有较低的屈强比,主要与组织中相对软的贝氏体铁素体和较硬的M-A岛复相组织以及晶粒尺寸有关。  相似文献   

17.
针对当前我国高强建筑用钢的开发,采用Ti-Nb微合金化技术设计试验钢化学成分,通过热膨胀试验确定了试验钢的动态CCT曲线,基于此设计了实验室热轧试验方案,研究了工艺参数对试验钢组织、性能的影响。结果表明:当水冷终冷温度大于610 ℃时,试验钢的显微组织为铁素体+珠光体;当水冷终冷温度小于390 ℃时,试验钢显微组织为少量铁素体+贝氏体;当终轧温度为810 ℃、水冷终冷温度为350 ℃时,试验钢显微组织为少量铁素体+贝氏体,屈服强度为837 MPa,这是细晶强化、相变强化、析出强化共同作用的结果,为800 MPa高强钢筋的研究开发提供了数据支撑和理论指导。  相似文献   

18.
对压力容器用钢Q345R开展终冷试验,研究终冷温度对轧态及正火态钢板力学性能与显微组织的影响。结果表明,在不同终冷温度下,轧态及正火态Q345R钢的力学性能均满足标准要求,但轧后直接空冷时,性能余量较小,在终冷温度为650 ℃时,力学性能较好;随着终冷温度的升高,钢板的屈服强度、抗拉强度、冲击性能均有下降的趋势,组织逐渐变粗大;轧态及正火态试样的微观组织均为典型的铁素体+珠光体,与热轧态钢板相比,正火态钢板的屈服强度和抗拉强度均明显降低,但冲击性能显著提高,且正火后组织有所细化。  相似文献   

19.
通过热模拟试验研究了冷却速率和控冷终止温度对V-N微合金化600 MPa高强钢筋组织和性能的影响。由动态CCT(Continuous Cooling Transformation)曲线和组织分析可知,实验钢筋在冷速为0.5~1℃/s时得到的室温组织为块状铁素体和珠光体;当冷速达到3℃/s时有少量的贝氏体(含量为5%)出现;当冷速在8℃/s以上时,实验钢筋的显微组织为少量的晶界铁素体+贝氏体+马氏体。因此,为了得到具有高强度和良好塑性的显微组织,轧后冷却速率应控制在0.5~3℃/s。此外,控冷终止温度应控制在600~625℃,显微组织为细小的块状铁素体+珠光体+少量的贝氏体(含量为0~8%),铁素体的晶粒尺寸为4.5~5.2μm,试样维氏硬度为263~274 HV,其对应的抗拉强度为875~908 MPa,有足够的强度余量。  相似文献   

20.
李斌 《铸造技术》2014,(4):728-729
以超低碳贝氏体钢为研究对象,实验分析了不同终冷温度对该材料抗拉强度、屈服强度、屈强比的影响,并观察了不同终冷温度试样的显微组织。结合文献理论分析了终冷温度对钢显微组织的影响,从讨论了对实验钢力学性能影响机理。结果表明,实验钢伸长率随终冷温度的降低而降低,抗拉强度和屈服强度随着终冷温度的降低而升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号