首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用膨胀法结合组织观察和硬度测试,绘制了GCr15钢的连续冷却转变(CCT)曲线,分析了不同加热温度、不同连续冷却速率下的相变及显微组织。结果表明,随着冷却速率增加,GCr15钢的硬度增大;加热温度由临界区升高到完全奥氏体区时,CCT曲线中珠光体转变区域向右下方移动、珠光体转变推迟且珠光体转变的温度区域扩大;随着奥氏体化温度升高,晶粒粗化,珠光体和马氏体开始转变点温度降低。  相似文献   

2.
利用JMatPro 7.0软件模拟预测Q1100高强钢的平衡相组成、钢的连续加热奥氏体化(TTA)曲线和钢的过冷奥氏体连续冷却转变(CCT)曲线、淬透性以及热物理性能参数。计算结果表明:Q1100高强钢奥氏体化温度Ac1=713.3 ℃,Ac3=831.9 ℃。钢在连续加热过程中,加热速率在1000 ℃/s时,奥氏体均匀化时间最短。钢在连续冷却过程中,其屈服强度、抗拉强度和硬度均随冷却速度的增大而增大,当冷却速度为100 ℃/s时,硬度、屈服强度和抗拉强度分别达到其最大值41.7 HRC、1180 MPa和1267 MPa。热物理性能参数密度和杨氏模量均随温度的降低而增大,热导率则先减小后增大;比热容、泊松比和线膨胀系数均随温度的降低而减小。  相似文献   

3.
利用热膨胀法并结合金相-硬度法在热膨胀仪和Gleeble-1500热模拟试验机上测定了Q460C钢的未变形和变形条件下的连续冷却转变曲线.测定了转变后组织的维氏硬度,随冷速的提高,组织硬度增大.两种CCT曲线上均有铁素体区(F)、珠光体区(P)、贝氏体区(B)和马氏体区(M).变形使CCT曲线向左上方移动,提高了奥氏体冷却转变开始温度,随冷速加大提高得越多.变形扩大了F和P区,缩小了B和M区.与不含铌的16Mn钢的CCT曲线对比,分析了铌对连续冷却转变规律的影响.  相似文献   

4.
采用Formastor-F Ⅱ型膨胀仪测量了 55NiCrMoV7钢以不同速度连续冷却时的膨胀曲线,利用膨胀法与金相—硬度法,确定了相变温度点,绘制出了试验钢的过冷奥氏体连续冷却转变曲线(CCT曲线),分析了冷却速度对其相变组织、CCT曲线和显微硬度的影响.结果表明:试验钢可以在较宽的冷却速度范围内得到马氏体组织,当冷...  相似文献   

5.
为进一步优化非调质NM400复相耐磨钢不同组织配比,利用Gleeble-3800热模拟试验机探究了试验钢在连续冷却条件下的组织转变规律,并结合金相法和硬度法,绘制出试验钢的动态连续冷却转变(CCT)曲线。结果表明,当冷速低于1 ℃/s时,试验钢组织为铁素体+粒状贝氏体+珠光体,部分粗大的原奥氏体晶粒转变为粒状贝氏体和珠光体。在冷却速率为5~40 ℃/s时,试验钢不再发生珠光体转变,显微组织均为铁素体+贝氏体+马氏体。并随着冷速的增加,马氏体含量不断增加,硬度升高;此外,不同分段冷却方案下,较低的中冷温度以及较长的空冷时间均有利于铁素体和贝氏体的转变。同时,残留奥氏体含量则随铁素体含量的增大而增大;由于试验钢的Ms点较高,马氏体板条较宽,并且有自回火现象发生。  相似文献   

6.
通过测定无Ce和添加0.026%Ce的H13热作模具钢的连续冷却转变(CCT)曲线,研究了稀土元素Ce对H13钢CCT曲线的影响。结果表明,0.026%Ce加入H13钢中可起到净化钢液、改善组织、细化晶粒和消除未溶碳化物的作用,并使珠光体转变和贝氏体转变曲线左移,珠光体相变和贝氏体相变提前,珠光体(A+P+C)和贝氏体(A+B+C)转变区域变大,马氏体(A+M+C)转变区域相应缩小。Ce的加入使H13钢的硬度增大,且硬度随冷却速度的增加而增大。  相似文献   

7.
利用相变膨胀仪分析不同连续冷却工艺对新型低成本含硼结构钢40CrMnSiB相变及组织转变的影响,利用膨胀法测定材料临界点及CCT曲线。结果表明:在试验条件下,40CrMnSiB钢相变温度A_(c1)为750℃,A_(c3)为850℃,M_s为340℃,M_f为175℃。在CCT曲线中,相变区域主要有三部分:高温区域的A(奥氏体)→F(铁素体)+P(珠光体)转变,中温区域的A(奥氏体)→B(贝氏体)转变及低温区域的A(奥氏体)→M(马氏体)转变。随冷却速度增大,铁素体、贝氏体相变开始温度和结束温度均有下降趋势。  相似文献   

8.
以H13钢热作模具真空淬火热处理组织演化预测数值模拟为目的,采用DIL805L热膨胀仪对H13热作模具钢进行连续冷却相变试验,结合显微组织和硬度绘制H13钢的连续冷却转变曲线(CCT曲线)。研究了不同冷速对试样显微组织和硬度的影响,对Koistinen-Marburger方程中相变因子进行拟合,研究了H13钢的相变规律。结果表明,马氏体转变的临界冷速为1 ℃/s,Ms点为335 ℃,随着冷速增大,试样硬度直至增大到660 HV。将拟合后的马氏体相变方程通过二次开发手段导入有限元软件中开展数值模拟计算,计算结果显示H13钢模具不同取样点处马氏体体积分数为90%,可认为真空气淬后H13钢模具的组织为马氏体和残留奥氏体。  相似文献   

9.
利用Gleeble3500热模拟试验机对船板用钢进行模拟试验,采集温度-膨胀量曲线,并结合金相法、硬度法绘制出试验材料的CCT曲线。分析CCT图和试验钢显微组织照片,得出不同冷却速度下该钢的组织转变情况。随着冷却速度的逐渐增大,试验钢的组织由多边形铁素体、准多边形铁素体逐步向粒状贝氏体、贝氏体铁素体的转变,同时显微硬度也随冷速的升高呈明显的上升趋势。  相似文献   

10.
利用L78RITA淬火热膨胀仪研究了X80管线钢过冷奥氏体转变的相变规律,结合金相-硬度法绘制了试验钢的连续冷却转变(CCT)曲线。结果表明,随着冷却速率的增加,X80管线钢过冷奥氏体分别发生了铁素体、贝氏体、马氏体转变;冷速小于3℃/s时,组织为铁素体和贝氏体;冷速在3~20℃/s时,组织只有贝氏体;冷速大于40℃/s时,组织中开始出现马氏体,且随着冷速的进一步增大,马氏体的含量逐渐增多,贝氏体逐渐减少直至消失。试验钢硬度随着冷却速率的增加呈逐步升高的趋势。在CCT曲线基础上,建立了相变点温度-冷却速率关系模型,并通过回归计算得到拟合度较高的相变模型,且模型计算值与试验值之间能够很好的地吻合,证明了该相变模型的可行性。  相似文献   

11.
耐蚀钢筋20MnSiCrV的连续冷却转变组织与性能   总被引:1,自引:0,他引:1  
利用膨胀法结合金相-硬度法,在Gleeble-3800C热模拟试验机上测定了耐蚀钢筋20MnSiCrV在不同冷却速度下过冷奥氏体连续冷却时的膨胀曲线,获得了该钢的连续冷却转变曲线(动态CCT曲线),并与普通20MnSiV螺纹钢筋进行了分析。结果表明,由于Cr的添加和Mn含量的降低,耐蚀钢筋20MnSiCrV的铁素体与珠光体相变温度升高,贝氏体相变区域扩大;当控冷速度在0.5~3℃/s时,可获得理想的组织与性能。  相似文献   

12.
利用热膨胀法,结合金相法、硬度法测定了23Cr Ni3Mo钢过冷奥氏体的连续冷却转变(CCT)曲线;并分析了连续转变过程中钢的组织和硬度。结果表明:试验钢在冷却速度为0.1~0.3℃/s时,得到铁素体和贝氏体的混合组织;冷却速度为0.5~5℃/s时,得到综合性能优良的下贝氏体组织;冷却速度≥10℃/s时,得到主要为板条状马氏体的组织,在温度-时间对数曲线上出现了明显的由马氏体相变引起的"拐点"。随着冷却速率的增大,23Cr Ni3Mo钢的硬度逐渐增大,最终稳定在490 HV0.2左右。  相似文献   

13.
在Gleeble-1500D热模拟试验机上,测定了ST52-3G钢在不同冷却速率下过冷奥氏体连续冷却的膨胀曲线,利用膨胀法结合金相-硬度法,绘制了试验钢过冷奥氏体连续冷却相转变曲线(CCT曲线),研究了试验钢组织及硬度与冷却速率之间的影响规律。结果表明,试验钢的Ac_1和Ac_3分别为760℃和940℃;微观组织主要有铁素体、珠光体和贝氏体。较慢冷却速率时发生铁素体和珠光体转变,其中铁素体含量较多;当冷却速率大于20℃/s时发生贝氏体转变;随着冷却速率的提高,各组织或晶粒变细,试验钢的硬度随着冷却速率的增加呈先快后慢趋势。  相似文献   

14.
利用DIL805A热膨胀仪结合金相—硬度法,测得了低合金耐磨钢65Mn Cr的临界点温度Ac1,Ac3以及Ms;并绘制了该材料的过冷奥氏体连续冷却转变曲线(CCT曲线);研究了65Mn Cr过冷奥氏体连续冷却过程中组织转变规律;最后对65Mn Cr和65Mn的CCT曲线做了比较。结果表明:相比65Mn,65Mn Cr钢CCT曲线大大右移,淬透性大大增加;该钢的临界冷却速度为1~3℃/s;得到淬火最佳参数:淬火速度为3℃/s,堆冷温度为200~400℃。  相似文献   

15.
采用膨胀法并结合金相法和硬度法,利用Gleeble-1500D热模拟试验机测定QP980钢在不同冷却速度下过冷奥氏体连续冷却时的膨胀曲线,利用Origin软件绘制QP980钢过冷奥氏体连续冷却相转变(CCT)曲线,分析冷却速度对QP980钢组织和硬度的影响。结果表明:QP980钢过冷奥氏体的冷却速度小于1.5℃/s时,主要发生铁素体、珠光体和贝氏体的转变;随着冷却速度的增加,铁素体软相组织不断减少,贝氏体等硬相组织不断增加,硬度值增加显著;冷却速度在2℃/s~10℃/s范围内主要发生贝氏体和马氏体的转变,硬度值变化较显著;冷却速度大于10℃/s时只发生马氏体转变,硬度值变化趋于缓慢。  相似文献   

16.
为研究热变形工艺参数对高碳钢连续冷却相变规律的影响,采用DIL805A膨胀仪和Gleeble3500试验机分别测定了未变形奥氏体和变形奥氏体的CCT曲线,并讨论了珠光体和马氏体相变的变化原因。结果表明:在连续冷却过程中,试验钢发生了珠光体、贝氏体和马氏体转变;奥氏体变形明显促进了珠光体和马氏体的转变,同时使CCT曲线向左上方移动,且随着变形量的增大,CCT曲线的移动幅度随之增大,未变形试验钢的珠光体转变开始温度约为603℃,变形量为30%的试验钢珠光体转变开始温度升高至632℃左右;在相同的热变形条件下,珠光体相变开始温度点的移动幅度大于马氏体相变;在总变形量为50%时,与一次热变形试验钢相比,经两次热变形的CCT曲线向左、上方移动的幅度更大。  相似文献   

17.
采用热膨胀仪测定了12Mn钢在不同冷速下过冷奥氏体连续冷却转变的膨胀曲线,采用膨胀法结合金相-硬度法获得了12Mn钢过冷奥氏体冷却转变曲线(CCT曲线),研究了冷却速率对12Mn钢组织及硬度的影响规律,并应用JMatPro软件模拟了CCT曲线.结果 表明,12Mn钢的Ac1和A c3分别是692和855℃;组织主要有铁...  相似文献   

18.
通过测定不同冷却速度下的相变膨胀曲线、显微组织和硬度,得到了4Cr5Mo2V钢的过冷奥氏体连续冷却转变(CCT)曲线;结合CCT曲线,研究了不同冷却速度下组织形貌演变及硬度变化的规律;比较分析了4Cr5Mo2V钢与H13钢过冷奥氏体连续冷却转变的异同。结果表明:经过不同冷却速度冷却后,4Cr5Mo2V钢的相变产物主要为贝氏体(B)和马氏体(M);冷速小于0.06℃/s时,相变产物主要是贝氏体组织;冷却速度在0.06~0.14℃/s之间,相变产物中出现了贝氏体和马氏体的混合组织;当冷速大于0.14℃/s时,相变产物为马氏体组织。4Cr5Mo2V钢与H13钢的CCT曲线相比,位置向右整体偏移,无铁素体+珠光体转变区,且贝氏体生成区变小,相同冷速下硬度明显提高。  相似文献   

19.
利用Formaster-Ⅱ全自动相变膨胀仪对传统35CrMo钢的过冷奥氏体转变CCT曲线重新进行了测定,并研究了冷却速度对35CrMo钢组织和显微硬度的影响。结果表明:35CrMo钢CCT曲线具有很宽的贝氏体形成范围,并且铁素体和珠光体区域与贝氏体区域分离。35CrMo钢经920℃×20 min奥氏体化后以4.60~1.53℃/s的冷却速度冷却时,可以得到100%的粒状贝氏体组织,显微硬度达到330~439 HV0.1。  相似文献   

20.
在Gleeble- 1500热模拟试验机上测试了ZG80CrMnMo钢的奥氏体连续冷却转变曲线(CCT曲线),并检测了不同冷却速度下转变产物的显微组织和硬度.研究了以1℃/s至45℃/s冷速连续冷却时的组织转变规律.结果表明,CCT曲线明显右移,珠光体和贝氏体转变被抑制,在所研究的冷却范围内容易得到马氏体+残余奥氏体组织.所测得的ZG80CrMnMo钢的CCT曲线可为生产马氏体钢提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号