首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

2.
利用Gleeble-3500热模拟试验机进行了高温压缩试验,研究了Ni-Cr-Co-Mo合金在变形温度950~1080℃、应变速率0.01~10 s~(-1)下的热变形行为。基于动态材料模型构建了合金热加工图。结果表明:合金在试验条件下具有正应变速率敏感性。合金的平均热变形激活能为566.758 kJ/mol。当应变为0.4时,合金的流变失稳区域较大,说明该合金在大应变时加工难度很大。在变形温度为1000℃时,随着应变速率降低,动态再结晶更加充分。合金最佳工艺参数为变形温度1000~1050℃、应变速率0.01~0.1 s~(-1)。  相似文献   

3.
采用Gleeble-3500热模拟试验机对锻态Ni_(55)Ti_(45)合金进行等温恒应变速率压缩实验,研究了该合金在变形温度为650~850℃、应变速率为0.01~1 s~(-1)范围内的高温变形特性,并分析其变形机制。结果表明,应力-应变曲线呈"应变软化"型,热变形激活能为317.304 k J/mol,根据双曲正弦函数建立了峰值流变应力本构方程。微观组织观察表明,在650℃、1 s~(-1)和700℃、1 s~(-1)时发生了局部塑性流动的失稳变形,主要由变形热效应导致。高温、低应变速率利于动态再结晶的发生,但动态再结晶晶粒尺寸更大。动态再结晶形核机制以晶界弓出机制为主,同时伴随有少量的PSN机制。  相似文献   

4.
采用Gleeble-1500热模拟实验机在温度为700~1200℃,应变速率为0.002~5 s~(-1)、最大变形量为55%条件下对特大型支承辊Cr4合金钢进行热压缩试验,研究了该合金的热变形行为及热加工特征,建立了Cr4合金钢在试验条件下的热加工图。结果表明:在其他变形参数恒定时,Cr4合金钢的热变形真应力随应变速率的升高而逐渐变大,随变形温度的提高而急剧降低;在变形温度为750~900℃,应变速率为0.002~0.01 s~(-1),变形温度为750~800℃,应变速率为0.049~2.718 s~(-1)和变形温度为800~1050℃、应变速率为0.1~4.482 s~(-1)的3个区域内易产生流变失稳现象;动态再结晶是触发材料流变软化及稳态流变的主要原因,Cr4合金钢的安全热加工区域的变形温度在950~1150℃之间、应变速率在0.018~0.223 s~(-1)之间。  相似文献   

5.
对Monel K-500合金对试样进行了时效处理,让其析出大量碳化物。使用Gleeble-3800热模拟机对Monel K-500合金试样进行了高温压缩试验,研究了该合金在变形温度850~1150℃,应变速率0.01~10 s~(-1)时的流动应力行为。建立了该合金的热压缩本构方程。根据试验数据建立了真应变0.8的热加工图。使用光学显微镜进行了组织分析,确定了合金压缩变形的加工"安全区"和"失稳区"。结果表明:在变形温度850℃、应变速率0.1 s~(-1)时合金开始动态再结晶;合金的热变形激活能为375.32611 k J/mol。合理的热加工参数是:应变速率0.1~0.5 s~(-1)、变形温度1000~1150℃。此时耗散功率在40%左右,再结晶充分,组织细小、均匀。  相似文献   

6.
在温度为900~1060℃和应变速率为0.001~10s~(-1)的条件下,通过热模拟压缩实验研究TC11/Ti-22Al-25Nb双合金电子束焊接件的高温热变形行为。结合实验数据,建立双合金热变形中流变应力随应变速率和变形温度的本构方程。同时对变形过程中的激活能进行计算和分析得出,激活能随着应变的增加而逐渐减小。在应变为0.9时激活能为334kJ/mol。变形过程中耗散率η随着变形参数的变化而变化;当应变速率为0.01、0.1和1s~(-1)时,η随应变的增加而增加;而当应变速率为0.001和10 s~(-1)时,η随应变的增加而减小。通过热加工图分析可知,最大耗散率(η=0.51)出现在1060℃和0.1 s~(-1),在此条件下,可以从焊缝区域组织中观察到明显的动态再结晶现象。而当应变速率降低时,耗散率η急剧下降,在1060℃和0.001s~(-1)的变形条件下,η降低到0.02,变形机制以动态回复为主。当失稳系数ξ(ε)为负时,材料高温变形发生失稳。分析可知,应变速率为0.001~0.6s~(-1),变形温度为900~1060℃是双合金热变形的安全区域。  相似文献   

7.
采用Gleeble-3500热模拟试验机研究了Ti-22Al-24Nb合金在温度为900~1 110℃和应变速率为0.01~10s~(-1)条件下的高温流动应力及微观组织,分析了应变速率和变形温度对高温流动应力及热变形组织的影响。结果表明,变形温度和应变速率对Ti-22Al-24Nb合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高。在α_2+B_2两相区,高应变速率下(6)ε≥1.0s~(-1))进行变形时,合金显微组织发生局部塑性流动和绝热剪切。在B_2单相区,低应变速率(6)ε≤0.1s~(-1))进行变形时,有明显的动态再结晶晶粒产生。高应变速率下,原始B_2相晶粒被明显拉长,晶界多呈不连续状态;低应变速率下变形时,随变形温度升高,合金易发生动态再结晶,当变形温度高于990℃时出现明显的动态再结晶特征;高应变速率下变形时,晶界模糊,随变形温度降低,晶界几乎全部消失,合金易发生局部塑性流动和绝热剪切。  相似文献   

8.
对GH4720Li合金在1080~1180℃、应变速率为0.01~10 s~(-1)条件下的单道次压缩变形行为进行了研究。利用压缩实验的应力-应变关系曲线,计算了变形条件下的热变形激活能,建立了相应的本构方程和热加工图。结果表明:动态再结晶是GH4720Li合金的主要软化机制;合金在1120~1180℃、应变速率在0.1~1 s~(-1)、真应变0.7时实现完全动态再结晶,最佳变形温度为1120~1140℃;γ′相的析出行为引起峰值应力和热变形激活能显著变化;热变形激活能在1160℃,达到最小值602 k J/mol;应变速率达到1 s~(-1)以上,合金出现失稳现象。  相似文献   

9.
采用Gleebe-3500型热模拟试验机对7075铝合金进行等温恒应变速率热压缩实验,研究了该合金在变形温度为250~450℃、应变速率为0.001~1 s~(-1)条件下的热变形行为,并据此建立了热加工图。结果表明:流变真应力随应变速率的升高而增大,随变形温度的升高而减小;经250℃、16 h欠时效处理的样品,其峰值应力要显著大于未经时效的样品;真应变为0.3和0.7的热加工图在250~350℃的温度区间、0.01~1 s~(-1)的应变速率区间均出现流变失稳;16 h欠时效态7075铝合金的最佳热变形参数为:变形温度400~450℃、应变速率0.01~0.001 s~(-1)。  相似文献   

10.
通过Gleeble-3500D热力模拟研究了挤压态镍基粉末高温合金在恒温和恒应变速率条件下的热变形行为和组织特征,变形温度范围为950~1150℃,应变速率范围为0.001~0.5 s-1。通过线性回归分析,获得了挤压态镍基粉末高温合金的本构方程,并求得热变形激活能为338.638 kJ·mol-1。在1050℃以下热压缩变形时,试样容易开裂;而在1050~1150℃的温度范围热压缩变形时,试样不易开裂。挤压态镍基粉末高温合金热压缩变形后发生了完全再结晶,再结晶晶粒尺寸受温度影响显著,在低于1100℃变形时,再结晶晶粒尺寸随变形温度升高稍有增大;而在高于1100℃变形时,再结晶晶粒尺寸随变形温度升高显著增大。该种合金的合理变形参数范围为0.001~0.01 s-1及1050~1100℃。  相似文献   

11.
通过在G1eeble-3800模拟机上热压缩试验研究了TB9钛合金在变形温度850~1050℃、应变速率0.01~10s~(-1)、变形程度70%的条件下的热变形行为。基于试验数据及Prasad判据建立了真应力-真应变曲线和加工图,通过其研究了该合金的高温变形行为、变形失稳现象和变形机制。结果表明:TB9钛合金的流变应力与变形速率成正比,与变形温度成反比:在试验条件下合金发生不连续屈服现象;功率耗散率较高的区域发生了不连续动态再结晶;流动失稳区为:850~1050℃和0.5~10s~(-1),850~950℃和0.08~0.5s~(-1),失稳现象表现为不均匀变形;适合加工的区域是1000~1050℃和0.01~0.1 s~(-1)围成的区域。  相似文献   

12.
为了考察6063铝合金在较高应变速率下的变形行为,采用Gleeble-3500热模拟试验机对合金在变形温度390~510℃和应变速率1~20 s~(-1)进行热压缩试验。结果表明:流动应力随着变形温度的升高而降低,随着应变速率的增大而升高。在应变速率为1~10 s~(-1)时,流动应力随着应变增加逐渐进入稳态流动阶段;在应变速率为20 s~(-1)时,流动应力达到峰值后随应变量增加而下降。通过热加工图获得适宜的热变形工艺参数为:变形温度460~490℃,应变速率2~6.3 s~(-1)。合金在失稳区发生局部流动和剪切变形,在安全加工区域组织更均匀。随着温度升高和应变速率下降,位错密度减小,合金发生动态再结晶。  相似文献   

13.
针对TC16钛合金,进行等温恒应变速率高温压缩变形试验,研究该合金在700~950℃,应变速率为1~10s~(-1)条件下的应力-应变及组织演变,通过应力-应变曲线建立了合金的流变应力方程,并利用其应变硬化率θ与应变ε的θ-ε曲线确定其发生动态再结晶的临界应变ε_c。结果表明,当应变速率一定时,流变应力在700~850℃温度区间变形时比850~950℃变形时的递减幅度大;当合金变形量达到50%时,在较高应变速率(如6)ε=10s~(-1))下变形,可使组织中的再结晶晶粒尺寸进一步细化。  相似文献   

14.
采用Gleeble-3800热/力模拟试验机研究了应变速率为0.01~10s~(-1),变形温度为300~450℃的ZE42镁合金高温压缩变形时的流变特征,同时根据材料动态模型(DMM)建立了ZE42镁合金在应变量分别为0.35,0.40和0.45条件下的热加工图。结果表明,ZE42镁合金在试验温度范围内热压缩变形的平均表观激活能为151kJ/mol。应变量对该合金的热加工图有明显影响。当应变量为0.40时,仅在300℃,10s~(-1)附近或者是320℃,0.01s~(-1)附近的2个极小区域内处于失稳状态,然而当应变量为0.35和0.45时失稳区主要分布在温度320℃,应变速率在0.1~1.0s~(-1)的较大区间内。350~450℃,应变速率≤0.1s~(-1)为ZE42镁合金适宜的热加工区间,该区间功率耗散因子峰值η_(max)=83%,压缩变形主要为连续动态再结晶晶界滑动协调流变机制。  相似文献   

15.
采用Gleeble-3500热模拟试验机对轧态Nitinol 60形状记忆合金进行等温恒应变速率拉伸试验,基于动态材料模型的加工图技术,研究了该合金在650~850℃和0.01~1 s~(-1)范围内的高温变形特性,并优化了其适宜的高温变形参数范围。结果表明,加工图中失稳区位于低温、高应变速率区,范围为650~776℃、0.075~1 s~(-1),对应的失稳现象为局部塑性流动。加工图中有2个η峰值区,范围分别为690~750℃、0.01~0.026 4 s~(-1)和750~838℃、0.01~0.050 5 s~(-1),η最大值分别达到了0.36和0.38,对应的变形机制均为动态再结晶,这2个区域为Nitinol 60合金适宜的热拉伸变形工艺参数范围。  相似文献   

16.
利用Gleeble-3800热模拟试验机,在变形温度为820~1060℃及应变速率为0.001~1 s~(-1)参数范围内对Ti-6Al-3Nb-2Zr~(-1)Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714和126.936k J/mol。基于动态材料模型(DMM)和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现:Ti-6Al-3Nb-2Zr~(-1)Mo钛合金在840~1060℃,应变速率为0.001~0.1 s~(-1)之间主要发生动态再结晶(DRX)/球化,此区间变形时耗散率峰值51%分别出现在940℃/0.001 s~(-1)和880℃/1 s~(-1),其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1 s~(-1))下该合金加工时易发生流变失稳现象。  相似文献   

17.
在Gleeble-3800热模拟试验机上通过高温等温压缩试验研究了20MND5钢在应变速率为0.001~10 s~(~(-1))、变形温度为950~1150℃的热变形行为及组织转变,研究了变形工艺对20MND5钢的热变形流动应力的影响规律,建立了其热变形本构方程。结果表明:在应变速率为0.001~0.1 s~(-1)时,20MND5钢的高温流变应力主要以动态再结晶软化机制为特征。在应变速率为1.0~10 s~(-1)时,真应力随应变量的增大而增大,但当应变速率为1.0 s~(~(-1)),变形温度达到1150℃时,发生明显的动态再结晶。综合考虑应变速率和变形温度对材料组织性能的影响,建立了基于本构方程的20MND5钢的热加工图,并确定了该钢的热变形流变失稳区及热变形过程的最佳工艺参数。分析讨论了不同区域的20MND5钢的高温变形特征,确定了20MND5钢在低温、中温及高温变形时,宜控制的应变速率及其应变量。  相似文献   

18.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

19.
在Gleeble~(-1)500D热模拟试验机上对O态6082铝合金进行了热压缩实验,研究了该合金在变形温度300~500℃,应变速率0.01~10 s~(-1)条件下的热变形行为和组织演化;基于Arrhenius双曲正弦本构关系建立了6082铝合金的本构方程;基于动态材料模型(DDM)和Murty法建立了热加工图,并结合微观组织进行验证。研究结果表明:6082铝合金为正应变速率敏感材料,峰值应力随温度的降低和应变速率的升高而升高,热变形过程中的主要软化机制为动态回复,在较高温较低应变速率(500℃,0.1 s~(-1))时,该合金发生动态再结晶。计算得到该合金的热激活能为171.1539 k J·mol~(-1),最佳热加工工艺参数区间为:450~500℃,0.2~0.5 s~(-1)。  相似文献   

20.
本文采用Gleeble-1500B热模拟试验机研究了铸造Mg-2.5Nd-1.0Zn-0.5Zr稀土镁合金在变形温度为200~400℃、应变速率为0.001~0.1 s~(-1),变形程度为30%条件下的高温压缩变形行为,分析了实验合金在高温变形过程中应力与应变速率和变形温度之间的关系。结果表明,Mg-2.5Nd-1.0Zn-0.5Zr镁合金热变形时,变形温度和应变速率是影响合金热变形性能的重要因素。应变速率越低,温度越高时更容易发生再结晶。提高变形温度和变形量、降低应变速率,均使动态再结晶程度增加,晶粒尺寸加大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号