首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inconel690镍基合金因其优异的抗晶间腐蚀能力而常应用于压水堆核电蒸汽发生器的管板堆焊隔离层。采用热丝TIG堆焊的方法在核电用SA508Gr.3Cl.2低合金钢表面堆焊Inconel 690镍基合金隔离层,并在焊后进行等温热处理以消除残余应力。采用OM、SEM、XRD对堆焊层和基体金属进行了组织表征,并对堆焊层和母材进行冲击韧性、硬度及拉伸性能进行测试和分析。研究结果表明,堆焊层组织在室温下的抗拉强度达到541.4 MPa,断后伸长率达到39.89%,基体低碳钢的抗拉强度为687.3 MPa,伸长率为20.8%。通过显微硬度测试得出堆焊层奥氏体组织平均硬度为140.8 HV,低于母材的159.5 HV。Inconel690堆焊层晶界附近析出的M_(23)C_6、NbC以及Ti C等碳化物相可对晶界产生钉扎作用,其在界面上的分布状态对提升堆焊层的高温力学性能和服役安全具有重要意义。  相似文献   

2.
采用等离子堆焊技术在Q235铝电解打壳锤头表面堆焊F40合金粉末熔覆层。利用扫描电镜、能谱仪和显微硬度计等分析等离子堆焊层的微观组织、微区成分和硬度分布。利用磨擦磨损仪对试样进行耐磨性测试,通过恒电位法评估堆焊层和基体的耐蚀性能。结果表明,堆焊层与基体形成了良好的冶金结合,堆焊层为典型的柱状晶组织。等离子堆焊层平均显微硬度为444HV0.1,为基体的2倍;耐磨性为基体的1.6倍;腐蚀速率Rcorr为3.524×10-4 mm/a,为基体的1/(4.2×104)。等离子堆焊后Q235钢材料的耐磨性、硬度和耐腐蚀性均有显著提高,有望提高电解铝打壳锤头的耐磨耐蚀性能。  相似文献   

3.
采用药芯焊丝TIG堆焊方法在20钢表面制备了FeAlNbB堆焊层。借助光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和显微硬度计对堆焊层的微观组织、相结构、显微硬度等性能进行了测试分析。结果表明:堆焊层组织均匀,结构致密,无气孔及裂纹等缺陷,与基体实现了良好的冶金结合;堆焊层组织主要为铁素体基体上弥散分布着金属间化合物,熔合线附近有少量魏氏体组织形成,热影响区出现了少量贝氏体组织;堆焊层主要由α-Fe、Fe_3Al、FeAl相组成,并含有少量的Al_2O_3相;堆焊层的平均硬度为736 HV0.1左右,较基体有明显提高,有利于改善材料的耐磨损性能。  相似文献   

4.
为减小喷焊过程中热收缩形成的拉伸应力,采用等离子喷焊的方法,在Q235钢基体上进行堆焊,制备出具有残余压缩应力的低温马氏体相变合金耐磨复合涂层。利用金相显微镜(OM)、SEM、EDS、XRD、X射线残余应力测试仪、显微硬度仪和摩擦磨损试验机等,对喷焊层金属的微观组织、成分和力学性能进行了分析和研究。结果表明:合适的工艺参数下,能够得到与基体呈冶金结合的无缺陷喷焊层组织;喷焊层的组织主要为马氏体和少量残余奥氏体组成;喷焊层获得较为理想的残余压缩应力,最大残余压缩应力可达到-351.2 MPa,平均残余奥氏体的质量分数约为10.18%;和基体材料相比较,等离子喷焊层的硬度提高2.5倍,耐磨性提高47.22倍。  相似文献   

5.
采用手工堆焊的方法,将一种堆焊焊条在球墨铸铁表面进行堆焊,并对堆焊件进行去应力处理,借助金相显微镜和硬度计对球墨铸铁表面堆焊层组织及硬度进行分析。结果表明,球墨铸铁表面堆焊2层,外层组织为珠光体+莱氏体,硬度为HV415,内层组织为珠光体+莱氏体+石墨,硬度为HV385,且堆焊层较致密,无裂纹生成。  相似文献   

6.
针对老旧柴油发动机肩胛密封面腐蚀损伤修复难的问题,选用HS121镍基合金焊丝作为焊接修复材料,采用类激光焊接技术对其进行修复。使用光学显微镜、X射线应力测定仪(XPS)、电化学工作站、高频往复摩擦磨损试验机、扫描电镜(SEM)和激光三维形貌仪对堆焊修复层截面微观组织形貌、残余应力、耐腐蚀和抗磨损性能等进行了观察和测试。结果表明,类激光堆焊修复层与母材属冶金结合,且无明显焊接缺陷;堆焊修复层表面的残余应力为普通氩弧焊的16%,腐蚀速率为基体的19.88%,耐磨性较基体提高了2.66倍。此外,修复层的自腐蚀电位正于发动机基体材料,自腐蚀电流密度值约为基体材料的1/2。  相似文献   

7.
为提高40Cr钢的耐磨性和疲劳性能,利用YLS-4000型光纤激光器对40Cr钢表面进行淬火强化。利用扫描电镜、显微硬度计等对淬硬层组织和硬度进行了分析,采用X-350A型应力测定仪对淬硬层的残余应力和残留奥氏体进行了测试。结果表明:40Cr钢表面激光淬硬层主要由板条状马氏体组成,马氏体的体积分数在95%以上,马氏体晶粒较基体组织有明显细化;淬硬表层的平均显微硬度(710.5 HV)显著高于基体(235.5 HV),随着到表面距离的增加硬度值逐渐降低至基体硬度;淬硬层表面产生较大的残余压应力,压应力值高达230 MPa以上。  相似文献   

8.
刘阳  刘爱国 《焊接》2017,(1):64-67
采用自动CMT(Cold metal transfer)焊工艺,在Q235钢板堆焊了H12Cr26Ni21Si不锈钢,焊接电流为108 A,焊接电压为15.8 V,摆动宽度为12 mm,摆动速度为23 mm/s,焊接速度为2 mm/s,堆焊搭接量为7 mm,获得了成型美观、致密无缺陷的不锈钢堆焊层。对堆焊层的显微组织、化学成分进行了分析,测试了堆焊层的显微硬度及与基体结合强度。结果表明,堆焊层组织为奥氏体树枝晶和等轴晶;Ni,Cr,Fe是组成堆焊层的主要元素;堆焊层硬度高于基体;堆焊层与基体的结合界面的抗剪切强度大于405 MPa。  相似文献   

9.
针对炮弹钢基体表面堆敷铜合金时存在泛铁问题等不足,创新性地提出用软铁代替铜合金作为堆焊金属,开展了纯铁弹带TIG堆焊工艺的研究.主要针对软铁弹带的力学性能和软铁堆焊的界面组织特征进行了深入研究.研究表明:与铜/钢堆焊形成的铜弹带比较,软铁弹带的硬度值大约为170 HV,剪切强度约为280 MPa,与铜弹带的力学性能相差不大.软铁堆焊界面上靠近熔合线的热影响区为马氏体组织,熔合线不明显,有基体合金熔化进入堆焊层,堆焊层为先共析铁素体和贝氏体类型组织,同时发现基体中的碳等合金元素也进入界面层.采用软铁作为堆焊金属可降低堆焊弹带的热裂纹倾向,避免了堆焊过程中因铜渗入钢基体而导致的品问渗透裂纹.经过堆焊工艺优化实现了界面层组织结构的优化,最终获得了理想的纯铁弹带.  相似文献   

10.
采用冷金属过渡(Cold metal transfer,CMT)焊接技术在Q345钢表面堆焊高Cr合金钢,以期对Q345进行表面强化。结果表明,CMT焊接技术在Q345钢表面堆焊高Cr合金钢方法可行,并且焊缝结合良好,无明显裂纹。组织主要是铁素体和珠光体,堆焊组织以马氏体和残余奥氏体为主。CMT焊接热输入低、热影响区小、界面处基体稀释率低。堆焊层硬度平均值为490 HV0.2,基体组织硬度平均值为182 HV0.2,复合板的冲击吸收能量为35 J。主要的断口形貌为撕裂棱和解理,基体和堆焊层的界面发现裂纹分叉。  相似文献   

11.
信息动态     
采用自动CMT(Cold metal transfer)焊工艺,在Q235钢板堆焊了H12Cr26Ni21Si不锈钢,焊接电流为108 A,焊接电压为15.8V,摆动宽度为12 mm,摆动速度为23 mm/s,焊接速度为2 mm/s,堆焊搭接量为7 mm,获得了成型美观、致密无缺陷的不锈钢堆焊层.对堆焊层的显微组织、化学成分进行了分析,测试了堆焊层的显微硬度及与基体结合强度.结果表明,堆焊层组织为奥氏体树枝晶和等轴晶;Ni,Cr,Fe是组成堆焊层的主要元素;堆焊层硬度高于基体;堆焊层与基体的结合界面的抗剪切强度大于405 MPa.  相似文献   

12.
王皓  余圣甫 《焊接》2018,(1):49-53
用电渣堆焊的方法在低合金钢上堆焊高铬铸铁硬面层,讨论了电流、电压及装配间隙等工艺参数对渣池功率密度以及硬面层成形质量的影响,对硬面层及堆焊界面进行了组织观察和耐磨损性能分析。结果表明:热输入过大会导致低合金钢过熔,而热输入过小则会在堆焊界面产生夹渣和未熔合;热输入功率密度为6~6.5W/mm~2时,电渣堆焊可以在低合金钢上堆焊大厚度无缺陷高铬铸铁硬面层;堆焊层与基体结合良好;高铬铸铁硬面层平均硬度700 HV,约为低合金钢基材硬度的2倍;摩擦失重为低合金钢基体摩擦失重的27.3%,高铬铸铁硬面层耐磨粒磨损性能优势明显。  相似文献   

13.
为说明激光堆焊层的组织与性能特点,进行了激光堆焊Fe40粉芯焊丝的试验研究,检测了堆焊层横截面的显微组织形貌和硬度分布.研究表明:激光堆焊层组织致密,无裂纹、气孔等缺陷;堆焊层组织为胞状过饱和奥氏体树枝晶;堆焊层与基体呈冶金结合;堆焊层的平均硬度为HV0.2550.  相似文献   

14.
采用自制药芯焊丝,利用3种保护气体(纯氢气,80%Ar+20%CO2和纯CO2气体)制备碳化钨/铁基堆焊层,对不同保护气体下WC颗粒溶解扩散、堆焊层组织、硬度及耐磨性进行研究. 结果表明,采用纯氩气保护堆焊时,WC颗粒的溶解扩散层宽度约为3 μm,WC颗粒边缘以须状共晶组织为主,焊层显微硬度为790 HV±20 HV,磨损量为11.4 mg;保护气体为纯CO2时,扩散层宽约为5 μm,共晶组织形态为菊花状、鱼骨状或类团絮状,显微硬度为590 HV±15 HV,堆焊层表面磨损程度小,磨损量为4.2 mg,较纯氩气保护降低了63%倍,耐磨性相对较好.  相似文献   

15.
邹因素  刘俊友  刘杰  郭奇峰 《热加工工艺》2013,42(1):160-162,165
以一种含Fe、Cr、B、Mn、Si等元素的新型Fe基合金药芯焊丝作为堆焊材料,利用TIG焊在13Mn钢的基体上制备堆焊层.借助SEM、XRD、DSC等手段观察和分析了堆焊层的组织形貌、物相构成及非晶相的起始晶化温度,同时测定了堆焊层的显微硬度和常温耐磨性能.结果表明:新型Fe基合金堆焊层结构均匀致密,与基体结合性好;堆焊层中非晶含量约为31.06 vol%,起始晶化温度Tx=582.3℃;堆焊层具有较高的显微硬度与耐磨性能,近表面的显微硬度达1000~1200 HV0.1,耐磨性能优于高铬铸铁,尤其是水冷处理的堆焊层耐磨性为高铬铸铁的2倍.  相似文献   

16.
纳米Y2O3-Co基合金激光熔覆复合涂层的分析   总被引:2,自引:1,他引:1       下载免费PDF全文
采用纳米Y2O3和Co基合金粉末,并利用激光表面熔覆技术和堆焊技术在Ni基合金基体上制备了纳米Y2O3-Co基合金复合涂层.运用扫描电镜(SEM)等测试方法,研究了复合涂层的显微组织和显微硬度,通过磨损试验和腐蚀试验分析了激光熔覆涂层和单一堆焊层的耐磨性和耐蚀性.结果表明,激光熔覆层显微组织由熔合区、细等轴状枝晶区及粗枝晶区构成;激光熔覆层的显微硬度由堆焊层的512.8 HV提高到868.9HV;激光熔覆层的耐磨性提高了51.2倍,40 min磨损量由堆焊层的25.6 mg降低到激光熔覆层的0.5 mg;激光熔覆层在10%HCl、10% HNO3和10% NaOH中的耐腐蚀性均比堆焊表面有明显改善.  相似文献   

17.
为了降低等离子堆焊过程中SiCp的烧损及改善SiCp的湿润性,采用改进的等离子喷焊枪在H13钢表面制备钴基镍包SiCp陶瓷增强复合堆焊层。用XRD对覆层的物相进行了鉴定;用OM和SEM分析了堆焊层组织;用显微硬度计测试了堆焊层的显微硬度。结果表明,堆焊层组织由结合区的胞状晶组织及涂层区的树枝晶以及一些颗粒相组成;堆焊层主要由Cr、Co等元素的硅化物和Cr的碳化物(Cr23C6、Cr7C3)及Co的固溶体组成,并在堆焊层顶层发现有少量的SiCp;显微硬度从表面向基体逐渐降低,呈梯度分布,堆焊层表面平均硬度(HV)可达800。  相似文献   

18.
铸铁闸阀因耐腐蚀、易铸造和价格低而得到广泛应用。为可靠启闭阀门,阀体和阀芯间配有铜合金密封层,密封层常以单独加工的铜合金密封圈与阀门配装,工艺繁琐、铜用量大、切屑多。为简化工艺和节约铜材,采用了手工氧乙炔钎焊及电弧自动堆焊工艺,在阀芯的密封面上制备了铜合金层。对上述2种工艺制备铜合金层的结构、结合强度、显微硬度、耐腐蚀和堆焊速度进行了对比研究。结果表明,钎焊层铁基体熔蚀较少,存在夹渣缺陷,与基体结合强度58.1 MPa;电弧堆焊层铁基体熔蚀明显,与基体结合强度52.2 MPa,夹渣缺陷少;电弧堆焊速度是钎焊的3倍;电弧堆焊层显微硬度高于钎焊层的,可能是基体的铁在堆焊层内固溶较多产生固溶强化效应;电弧堆焊层更耐腐蚀。  相似文献   

19.
选用D057(EDPCrMoV-Al-15)堆焊焊条,采用焊条电弧焊在Q345B钢基体上以不同的焊接电流进行了堆焊试验.多层堆焊后,对熔覆金属进行回火热处理,并分析回火后堆焊熔覆金属的显微组织.两种焊接电流所得堆焊层的显微组织无明显差别,所得堆焊熔覆金属的组织:第一道为回火索氏体;第二道为回火索氏体+白色残余奥氏体枝晶组织;第三道为回火索氏体+马氏体+白色残余奥氏体枝晶组织,其中马氏体由残余奥氏体分解所得.堆焊熔覆金属回火后的显微硬度约为600 HV.  相似文献   

20.
用MIG堆焊的方法,在Q235上制备WC颗粒增强镍基耐磨堆焊层,利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)等方法对堆焊合金的显微组织进行了观察分析,对堆焊层的硬度和耐磨性进行了测试分析。结果表明:堆焊层的基体组织为Ni基固溶体,其上分布着Ni3B、Ni3Si等硬质相,这些硬质相与未熔WC颗粒构成了耐磨相,起到减磨耐磨的作用,镍基基体起到支撑作用,使得堆焊层具有良好的耐磨性。WC含量一定时,随着热输入的增大,WC颗粒的溶解使得堆焊层的硬度从45HRC降低至35.6HRC;随着WC含量的增加,堆焊层中WC硬质相的体积分数增多,使其抗磨粒磨损性能较Ni-B-Si基体从7.83倍提高至8.7倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号