首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在时效温度为438~458 K、实验应力为120~180 MPa的条件下,采用RWS-50型电子蠕变机对2219铝合金蠕变时效行为进行研究。采用包含双曲正弦函数的方程,通过对实验数据的线性回归分析,确定应力指数、蠕变激活能及相关常数,建立2219铝合金稳态蠕变速率与实验应力及时效温度之间的关联本构模型。结果表明:随着实验应力的增大和时效温度的升高,2219铝合金的稳态蠕变速率增大,且蠕变曲线在第二阶段的持续时间缩短;依据本构方程计算出该铝合金在各条件下的稳态蠕变速率与其实验值的平均相对误差为4.22%,表明该本构方程可为2219铝合金蠕变时效成形工艺的制定提供理论依据。  相似文献   

2.
《塑性工程学报》2013,(6):89-93
对7055铝合金在时效温度155℃、不同应力水平和时效时间条件下进行多组蠕变试验,分析蠕变时效对微观组织和力学性能的影响。基于Kowalewski的蠕变应变本构模型,并通过分析微观组织演变建立的析出相长大模型与析出相强化模型,确立了能够较好描述材料蠕变行为的蠕变-时效统一本构模型;通过遗传算法得到了本构方程的材料参数。  相似文献   

3.
利用Cowper-Symonds、Johnson-Cook两个经典本构模型和Mises屈服准则,结合常温和高温条件下Al-5.8Cu铝合金SHPB实验结果,成功建立了应变率ε觶、温度T与Al-5.8Cu铝合金动态屈服应力Yd的多因素Cowper-Symonds-Johnson-Cook屈服本构模型。利用多因素模型预测的Al-5.8Cu铝合金板动态屈服应力与实验所测值非常接近,相对误差最大值4.8%,最小值为-0.1%。  相似文献   

4.
在573~723 K、0.001~1 s~(-1)变形条件下研究均匀化态Al-3.2Mg-0.4Er铝合金的热变形行为。基于热压缩实验结果,构建综合考虑应变速率、变形温度和应变的唯象本构方程,同时建立再结晶动力学方程和塑性加工图。结果显示:所构建的本构模型能准确地预测Al-3.2Mg-0.4Er铝合金在热变形过程中的流变应力。再结晶组织的演变和再结晶体积分数可以由所建立的动力学方程以S曲线形式进行描述。此外,构建了合金在不同应变下的热塑性加工图,得到均匀化态Al-3.2Mg-0.4Er铝合金的较优加工条件为573 K、0.001 s~(-1)及723 K、0.001~1 s~(-1).  相似文献   

5.
准确的材料本构模型是有限元数值建模与模拟的基础和关键。在应变速率为0.001~10 s-1和变形温度为750~1150℃的条件下,进行了638模具钢热模拟实验,得到了其在不同条件下的应力-应变曲线,研究了其高温变形行为。结果表明,随着应变的增加,流动应力急速增大,达到峰值后缓慢减小并最终趋于平衡,这是材料加工硬化和动态软化综合作用的结果。对应力-应变曲线进行摩擦修正后,分别基于改进Johnson-Cook本构模型和应变补偿的Arrhenius本构模型建立了638模具钢本构模型,两者的平均相对误差分别为8.03%和7.66%,综合考虑所建本构模型的精确度和实际激光热处理中的高温、高应变速率情况,建议选用基于应变补偿的Arrhenius本构模型。  相似文献   

6.
通过热模拟实验研究了Al-5.8Cu-0.6Mg-0.6Ag-0.3Nd合金在变形温度360~520℃和应变速率0.001~10 s~(-1)下的热变形行为。计算了变形激活能,建立了变形本构方程,绘制了变形条件下的热加工图。结果表明,合金最适宜的加工变形条件为变形温度440℃和应变速率0.001s~(-1)。  相似文献   

7.
利用Gleeble-1500热模拟机,研究6111铝合金在变形温度为350℃~550℃、应变速率为0.01s-1~10s-1的热变形流变应力行为。研究结果表明,6111铝合金为正应变速率敏感材料,且随着变形温度升高抗拉强度减小,其热变形经历了从应变硬化阶段过渡到稳态变形阶段的过程,软化机制主要为动态回复;采用Zener-Hollomon参数建立6111铝合金的本构方程,该方程可用于模拟6111铝合金材料一般加载情况下的热成形过程。  相似文献   

8.
以搭接面积为1 mm2微型单搭接钎焊接头为研究对象,采用新型高温蠕变测试装置,测定了Sncu钎焊接头应力指数n和蠕变激活能Q,构建了稳态蠕变本构方程,探讨了蠕变变形机制.结果表明,在低温高应力下,SnCu共晶钎料钎焊接头应力指数为8.73,激活能在59.1~63.2 kJ/mol,位错攀移运动主要受位错管道扩散机制控制;在高温低应力区,Sncu共晶钎料钎焊接头应力指数为6.45,激活能在88.4~97.5 kJ/mol,位错攀移运动主要由晶格自扩散机制控制.  相似文献   

9.
6082铝合金热变形的本构模型   总被引:4,自引:1,他引:4  
利用Gleeble-1500热模拟机,研究6082锅合金在变形温度为300~500℃以及应变速率为0.01-10/s下高温单道次压缩过程的热变形流变应力行为.结果表明:6082铝合金高温单道次压缩下的热变形经历了从应变硬化阶段过渡到稳态变形阶段的过程,其软化机制主要为动态回复.该合金流变应力的大小受变形温度、应变速率的强烈影响,它随变形温度升高而降低,随应变速率提高而增大,说明该合金足一个正应变速率敏感的材料.该合金高温流变应力σ可采用Zener-Hollomon参数的函数来描述,函数表达式中参数A,a和n的值分别为3.97×1011s-1、0.011MPa-1、9.16;其热变形激活能Q为143.89kJ/mol.  相似文献   

10.
利用光学显微镜及扫描电镜系统研究了1%Si加入Mg-9Al后显微组织的变化并测试了抗蠕变性能.结果表明,基体合金的铸态组织均由α-Mg和沿枝晶界分布的第二相组成,1% Si的加入则形成了晶界汉字状Mg2Si, 有效地阻滞了位错沿晶界的攀移和滑移, 提高了镁合金的高温抗蠕变性能.蠕变以后,Mg2Si不仅分布在晶界,而且向α-Mg基体中扩展.  相似文献   

11.
《轻金属》2018,(12)
采用Gleeble 3800热模拟机测试了Mg-3Zn-1Zr合金在温度为250~350℃、应变速率为0. 01~1 s-1条件下的多组热模拟压缩变形行为。结果表明:合金在热压缩时表现出明显的动态再结晶特征,随应变的增加流动应力先快速增加,然后经过一个缓慢的增加后达到峰值,最后极缓慢的下降并保持稳定。合金热变形时的流动应力对变形温度和变形速率非常敏感,随变形速率的增加而增大,随变形温度的升高而降低。利用热模拟压缩实验数据,基于Arrhenius方程和Zener-Hollomon参数,运用多元回归分析方法建立了Mg-3Zn-1Zr合金在高温变形过程中的流变应力本构模型。  相似文献   

12.
Al-4.7Mg-0.7Mn-0.1Zr-0.4Er合金高温变形行为   总被引:2,自引:1,他引:2  
在Gleeble 1500D热模拟仪上进行热压缩实验,研究Al-4.7Mg-0.7Mn-0.1Zr-0.4Er合金高温变形行为,变形温度为300~500℃,变形速率为0.001~10 s-1,变形后总应变量为0.7。变形温度高于400℃时,真应力-真应变曲线呈现稳态流变,在其他温度下变形真应力-真应变曲线表现为加工硬化。根据动态材料模型建立合金的加工图,在400~500℃和0.001~0.1 s-1变形时加工图上出现一个发生动态回复的峰区,相应的变形激活能为176 kJ/mol,大于纯铝的自扩散激活能,表明合金在该区域变形的机制是位错的交滑移。变形失稳区的组织特征是局部变形。  相似文献   

13.
采用Gleeble 3500热模拟试验机模拟了在不同温度和应变速率下6082铝合金的流变力学行为,建立了6082铝合金的本构方程,得到了应力-应变曲线。结果表明,6082铝合金流变应力随变形温度的升高而降低,随应变速率的增加而增大。本构方程对峰值应力的计算结果与试验数据具有较高的一致性。  相似文献   

14.
6063铝合金半固态变形本构模型研究   总被引:1,自引:0,他引:1  
采用Gleeble3800热模拟试验机,对近液相线半连续铸造方法制备的6063铝合金半固态坯料进行了热模拟压缩试验,变形温度为888~903K,应变速率为0.1~5.0s-1,研究了变形温度和应变速率对变形行为的影响。结果表明,半固态铝合金的流动应力随变形温度的升高而降低,随应变速率的增大而增大。变形温度和应变速率对峰值应力的影响较稳态应力显著。合金触变压缩流变应力的双曲正弦对数项与热力学温度倒数之间满足线性关系,流变应力与流变速率之间满足双曲正弦关系式。以半固态触变压缩试验结果为基础,建立了6063铝合金的半固态本构关系:σ=e(35.3183-0.03651T)ε-0.07075ε0.05982,通过计算结果与试验结果的比较可知,该模型具有较高的精度。  相似文献   

15.
本文对Al-9.39Zn-1.92Mg-1.98Cu合金做等温热模拟压缩实验,变形温度为300 ℃~460 ℃,应变速率为0.001 s-1~10 s-1,变形量为60%。结果表明:变形时,合金的流变应力力随着变形温度的降低或应变速率的增大而增大。由于热变形时存在摩擦影响,对流变应力曲线进行修正.结果发现摩擦修正后的应力值低于实验值,摩擦力对流变应力的影响程度随着温度的降低和应变速率的增大而增大。基于经典的Arrhenius方程,考虑应变量对材料常数(α,n,Q和A)的影响,构建该合金在热变形时的本构方程。评价改进的本构方程预测能力发现流变应力值与实测值吻合度较高,其相关度高达93.5%。  相似文献   

16.
采用热模拟实验机对5A06铝合金进行了变形温度为300,350,400,450和500℃,应变速率为0. 01,0. 1,1和10 s-1不同热变形条件下的等温压缩实验,分析了变形温度和应变速率对5A06铝合金热变形行为的影响,基于实验数据建立了5A06铝合金的Johnson Cook初始本构模型,并在此模型基础上进行了修正。研究结果表明:5A06铝合金热压缩时的热变形应力与变形温度、应变及应变速率均有关,热变形应力随着应变的增大先快速增大,然后逐步减小直至稳定,随变形温度的升高而降低,随应变速率的增大而增大;与Johnson Cook初始本构模型相比,修正后的本构模型具有更高的预测精度,更能准确地表达5A06铝合金热变形应力与热变形条件之间的关系。  相似文献   

17.
采用Gleeble-1500热模拟试验机对4032铝合金在变形温度370~490℃、应变速率0.02~5 s-1的条件下的流变应力进行了研究.分析了变形温度和应变速率对4032铝合金高温塑性变形应力的影响,计算出了激活能和应力指数值.建立了4032铝合金的本构方程.  相似文献   

18.
作为最具潜力的航空航天高温结构材料,Ti2AlNb基合金具有高的比强度和良好的高温蠕变性能。本文对热轧态Ti-22Al-26Nb合金高温变形中的力学行为和再结晶行为进行研究,建立其高温本构关系模型,对其中呈现出的动态再结晶多应力峰值曲线特征(以1000℃,0.1s-1为例)进行拟合分析。结果表明:基于双曲正弦函数建立Ti-22Al-26Nb合金的高温本构关系模型的精度较高,最大误差为2.6%,可以很好地描述合金在高温变形时各热力学参数之间高度非线性的复杂关系,由修正的Avrami方程预测得知再结晶体积分数与应变呈现典型的再结晶动力学增长趋势,揭示了该合金高温变形过程中复杂的软化行为。  相似文献   

19.
研究不同时效温度下2124铝合金蠕变性能及组织变化,建立合金的蠕变本构模型。结果表明,由于该模型采用了析出相瞬时体积分数增长率描述析出相变化,与试验结果更吻合,适合研究合金晶粒的非均匀形核长大。  相似文献   

20.
基于Gleeble-3500热模拟试验机,以AA6111铝合金板材为试验材料,在变形温度为425℃~525℃范围内、应变速率为0.01/s~1.0/s范围内进行了的高温拉伸测试,获得了材料在高温下的真应力-应变曲线.对拉断后的试样进行组织分析,阐述了不同变形条件下AA6111铝合金的组织对其高温流变行为的影响.研究结果...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号