首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp-monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However, uncertainties increase dramatically when measuring an instrument's spectral irradiance or radiance responsivity. We describe what we believe to be a new laser-based facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) that was developed to calibrate instruments directly in irradiance or radiance mode with uncertainties approaching or exceeding those available for spectral power responsivity calibrations. In SIRCUS, the emission from high-power, tunable lasers is introduced into an integrating sphere using optical fibers, producing uniform, quasi-Lambertian, high-radiant-flux sources. Reference standard irradiance detectors, calibrated directly against national primary standards for spectral power responsivity and aperture area measurement, are used to determine the irradiance at a reference plane. Knowing the measurement geometry, the source radiance can be readily determined as well. The radiometric properties of the SIRCUS source coupled with state-of-the-art transfer standard radiometers whose responses are directly traceable to primary national radiometric scales result in typical combined standard uncertainties in irradiance and radiance responsivity calibrations of less than 0.1%. The details of the facility and its effect on primary national radiometric scales are discussed.  相似文献   

2.
For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved.  相似文献   

3.
Holy JA 《Applied spectroscopy》2004,58(10):1219-1227
The grating equation is used to generate quadratic calibration equations for multichannel detectors with perpendicular and tilted focal planes. The quadratic coefficients are not independent and contain terms that are used to solve for spectrometer-detector parameters. The parameters can be calculated from a quadratic fit at one spectrometer position, but more accurate values can be obtained from quadratic fits at two spectrometer positions. The calculations show that the detector focal plane is tilted by about two degrees. Once values for the spectrometer-detector parameters are obtained from calibrations using at least three lines at one or two spectrometer positions, only one calibration line at any spectrometer position is required to obtain accuracies on the order of 0.1 cm(-1) over a several thousand wavenumber range. The main cause of spectrometer drift is a change in the diffraction angle and/or the spectrometer included angle. This drift is almost totally compensated by the one-line calibration, which adjusts the diffraction angle. A neon pen lamp is used to generate the calibration spectra. Using standard air wavelengths compared to true wavelengths can produce calibration errors of 0.1 to 0.6 cm(-1); the magnitude depends on local conditions and how the laser wavelength is treated.  相似文献   

4.
An updating procedure is described for improving the robustness of multivariate calibration models based on near-infrared spectroscopy. Employing a single blank sample containing no analyte, repeated spectra are acquired during the instrumental warm-up period. These spectra are used to capture the instrumental profile on the analysis day in a way that can be used to update a previously computed calibration model. By augmenting the original spectra of the calibration samples with a group of spectra collected from the blank sample, an updated model can be computed that incorporates any instrumental drift that has occurred. This protocol is evaluated in the context of an analysis of physiological levels of glucose in a simulated biological matrix designed to mimic blood plasma. Employing data of calibration and prediction samples acquired over approximately six months, procedures are studied for implementing the algorithm in conjunction with calibration models based on partial least squares (PLS) regression. Over the range of 1-20 mM glucose, the final algorithm achieves a standard error of prediction (SEP) of 0.79 mM when the augmented PLS model is applied to data collected 176 days after the collection of the calibration spectra. Without updating, the original PLS model produces a seriously degraded SEP of 13.4 mM.  相似文献   

5.
Deviation values of specific heat difference DCp; the Gibbs free energy difference DG; enthalpy difference DH; and entropy difference DS between the
supercooled liquid and corresponding crystalline phase produced by the linear, hyperbolic, and Dubey’s expressions of DCp and the corresponding experimental values  are determined for sixteen bulk metallic glasses (BMGs) from the glass transition temperature Tg to the melting temperature Tm: The calculated values produced by the hyperbolic expression for DCp most closely approximate experimental values, indicating that the hyperbolic DCp
expression can be considered universally applicable,compared to linear and Dubey’s expressions for DCp;which are accurate only within a limited range of conditions.For instance, Dubey’s DCp expression provides a good approximation of actual experimental values within certain conditions.  相似文献   

6.
A simplified model is used to identify the diffuser shape that maximises pressure recovery for several classes of non-uniform inflow. We find that optimal diffuser shapes strike a balance between not widening too soon, as this accentuates the non-uniform flow, and not staying narrow for too long, which is detrimental for wall drag. Three classes of non-uniform inflow are considered, with the axial velocity varying across the width of the diffuser entrance. The first case has inner and outer streams of different speeds, with a velocity jump between them that evolves into a shear layer downstream. The second case is a limiting case when these streams are of similar speed. The third case is a pure shear profile with linear velocity variation between the centre and outer edge of the diffuser. We describe the evolution of the time-averaged flow profile using a reduced mathematical model that has been previously tested against experiments and computational fluid dynamics models. The model consists of integrated mass and momentum equations, where wall drag is treated with a friction factor parameterisation. The governing equations of this model form the dynamics of an optimal control problem where the control is the diffuser channel shape. A numerical optimisation approach is used to solve the optimal control problem and Pontryagin’s maximum principle is used to find analytical solutions in the second and third cases. We show that some of the optimal diffuser shapes can be well approximated by piecewise linear sections. This suggests a low-dimensional parameterisation of the shapes, providing a structure in which more detailed and computationally expensive turbulence models can be used to find optimal shapes for more realistic flow behaviour.  相似文献   

7.
The accuracy of the reference concentrations of moisture in electrical insulating oil RM 8506 and lubricating oil RM 8507 (both of mineral type) and specified by the National Institute of Standards and Technology (NIST) as containing 39.7 and 76.8 ppm (w/w) water, respectively, has recently been the subject of debate in this journal. To shed some further light on this controversy, we report in this correspondence results for these oils obtained by two additional methods, one based on specially designed reagents for diaphragm-free Karl Fischer (KF) coulometry and the other based on the concept of stripping at elevated temperature/continuous KF coulometry. A positive interference effect was shown to take place for RM 8506 when the direct coulometric method was used. If the results are corrected for this, the values including six different procedures varied in the range 13.5-15.6 ppm (w/w). For RM 8507, all values were between 42.5 and 47.2 ppm (w/w), which means that the values recommended by NIST for both reference oils using volumetric titration are about twice as high as those obtained with the other techniques. A possible explanation for this discrepancy is presented.  相似文献   

8.
9.
选用4个校准方程拟合应用于航天领域的两种NTC热敏电阻温度计,采用最小二乘法计算校准方程的系数,通过几个统计数据比较校准方程的性能并确定最佳拟合方程,同样的方法可用于评估其它NTC热敏电阻温度计校准方程的拟合能力.  相似文献   

10.
We explored effects of measurement conditions on wave aberration estimates for uncorrected, axially myopic model eyes. Wave aberrations were initially referenced to either the anterior corneal pole or the natural entrance pupil of symmetrical eye models, with rays traced into the eye from infinity (into the eye) to simulate normal vision, into the eye from infinity and then back out of the eye from the retinal intercepts (into/out of the eye), or out of the eye from the retinal fovea (out of the eye). The into-the-eye and out-of-the-eye ray traces gave increases in spherical aberration as myopia increased, but the into/out-of-the-eye ray trace showed little variation in spherical aberration. Reference plane choice also affected spherical aberration. Corresponding residual aberrations were calculated after the models had been optically corrected, either by placing the object or image plane at the paraxial far point or by modifying corneas to simulate laser ablation corrections. Correcting aberrations by ablation was more complete if the original aberrations were referenced to the cornea rather than to the entrance pupil. For eyes corrected by spectacle lenses, failure to allow for effects of pupil magnification on apparent entrance pupil diameter produced larger changes in measured aberrations. The general findings regarding choice of reference plane and direction of measurement were found to be equally applicable to eyes that lacked rotational symmetry.  相似文献   

11.
12.
ABSTRACT This paper presents the application of the weight function method for the calculation of elastic T -stress. First, the background of the weight function method for the calculation of T -stress is summarized. Then an analysis of known weight functions for T -stress revealed that it is possible to approximate them with one universal mathematical form with three unknown parameters with high accuracy. The existence of this weight function form significantly simplified the determination of weight functions for T -stress. For any particular crack geometry, the unknown parameters can be determined from reference T -stress solutions. The general weight function expression, with suitable reference T -stress solutions, was used to derive the weight functions for single edge cracked plate, double edge cracked plate and center cracked plate specimens. These weight functions were then further used to calculate the T -stress solutions for cracked specimens under several nonlinear stress fields and were compared to available numerical data.  相似文献   

13.
Abstract

Correlation properties of light scattered by a moving diffuser are determined by studying the spectral characteristics of the light that emerges from two pinholes placed after the diffuser. These properties are used to determine the correlation functions of the heights of diffuser surface and the speed of the diffuser. The phase of the light on the two pinholes after it has passed through the moving diffuser, is also determined.  相似文献   

14.
15.
A simplified method for finite-element calculation of the stressed state of a plane region undergoing a polymorphic transformation is described. An exact solution is obtained for a circular region and the exact solution is compared with the numerical one. The effect of an austenite-ferrite transformation on the behavior of the stressed state in the circular region is analyzed.Izhevsk Mechanical Works, Izhevsk, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 68, No. 1, pp. 123–127, January–February, 1995.  相似文献   

16.
A weight function method for the determination of the critical plane is here proposed for the case of specimens under combined bending and torsion in the high cycle fatigue regime. The critical plane is assumed to be coincident with the mean maximum absolute shear stress plane, which is calculated by averaging the instantaneous angle between the specimen axis and the normal to the maximum absolute shear stress plane. Two kinds of weight functions are proposed to determine such a plane. The proposed method to determine the critical plane is verified by employing fatigue data available in the literature in terms of experimental fracture planes, and the multiaxial fatigue life is also predicted by a reformulation of the criterion proposed by Carpinteri et al. to verify the determined critical plane. The results show that the proposed method can be applied to determine the critical plane under both constant and variable amplitude loading.  相似文献   

17.
18.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中.通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可...  相似文献   

19.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   

20.
The International Commission on Radiological Protection Publication 103 recommended that ionising radiation doses should be assessed based on voxel phantoms. An anthropomorphic voxel phantom for the Reference Taiwanese Adult was built from analyses of computed tomography (CT) images. Thirty representative adult individuals were selected from normal patients in the hospital, with body mass index between 19.6 and 25.6 for males and 18.8 and 27.0 for females and body height between 163 and 175 cm for males and 152 and 162 cm for females. The Reference Taiwanese Adult was determined from these individuals by analysing their CT images for parameters characterising the size, position and orientation of several organs. Analysed parameters included the volume, surface area, major and minor axes, mean chord length, position relative to the body centre, and orientation with respect to the body axis, for liver, spleen, kidney, stomach, gallbladder and bladder. The person with the highest score was designated the Reference Taiwanese Adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号