首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Cemented paste backfill(CPB) is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contains sulphate ions.Till today,no studies have addressed the effect of sulphate on the response of CPB to cyclic loadings by using shaking table technique.This study presents new findings of assessing the effect of the sulphate in the pore water of CPB on its geotechnical response to cyclic loading by using shaking table.CPB mixtures were prepared(with and without sulphate),poured into a flexible laminar shear box,cured to 4 h,and then exposed to cyclic loading using one-dimensional(1D) shaking table.Several parameters(e.g.pore water pressure,settlement,lateral deformation,acceleration,electrical conductivity,effective stress,and liquefaction susceptibility) were monitored or determined before,during,and after shaking.Obtained results indicate that the sulphate-bearing CPB cured to 4 h can be prone to liquefaction under the studied conditions.However,sulphate-free CPB samples are resistant to liquefaction.These results are expected to contribute to a better understanding of the effect of water chemistry on the cyclic behavior of CPB,consequently enhancing the cost-effective design of CPB structures.  相似文献   

2.
The collapse of the World Trade Center Towers and other recent fires in tall buildings has motivated this study to understand the performance of structural frames under fire loading. Three two-storey, two-bay composite steel frames were constructed and subjected to dead loads by applying weight blocks, and to thermal load by placing the frame in a furnace. The furnace was specially designed to allow for controlled heating of the structural elements that formed the four compartments of the test frame. This paper describes the experimental results of furnace test conducted on the three full-scale composite frames. The three tests differed from each other in the number and location of compartments that were heated by the furnace. For each test, the structural elements were subjected to a heating-up phase followed by a cooling-down phase. The furnace temperatures and the steel and concrete temperatures recorded during the test are presented. The thermally induced horizontal displacements of the columns and vertical deflections of the composite beams are discussed. Observations on local buckling of the steel beam, cracking of the concrete slab and failure of the beam-to-column connections are tabulated. Experimental results of the three tests are compared with each other by studying the complete deformation process of the test frames over time. Results indicate that the deformation process of the test frames was highly dependent on the number and location of compartments that were subjected to thermal loading.  相似文献   

3.
针对建筑物内人体的热舒适性与内墙壁面温度的相关性,建立了具有复合材料墙体的房间内温度响应的数学模型.结果显示,在相同的加热(制冷)条件下,由相同材质、相同尺寸组合构成的复合材料墙体,在不同的材料排列方式情况下,室内的温度响应有很大的不同,这对间歇性供热(冷)房间内人体的热舒适性有较大的影响.  相似文献   

4.
The high sedimentological variability of gypsum rocks has the effect that a univocal characterization of this material is not easy to establish. This is particularly true from the geomechanical point of view: when the mechanical properties of gypsum rocks are requested, it is therefore necessary to undertake detailed characterization analyses. Common facies of gypsum was observed in the Upper Miocene evaporitic succession (Messinian Salinity Crisis) within the whole Mediterranean Basin. In this work, mechanical tests were conducted on a site-specific facies, represented by the microcrystalline branching selenite. The tested samples came from the Monferrato area (northwestern Italy). Uniaxial compressive strength (UCS) tests were performed in order to obtain reference mechanical parameters. More rapid and economic point load test (PLT) and ultrasonic pulse velocity (UPV) measurements were additionally performed to verify their applicability as complementary/alternative methods for site characterization. Rock-type specific PLT-UCS and UPV-UCS relationships were established. A wide dispersion of the mechanical parameters was observed due to the heterogeneities of the studied material. Consequently, compositional, textural and microstructural observations on selected samples were performed. Two main material classes were recognized based on average grain size and total gypsum content, underlining the significant influence of the grain sorting on the measured mechanical properties.  相似文献   

5.
Problems have occurred with dykes constructed on the Lisan Marl to retain brine pumped from the Dead Sea, which is chemically processed to produce potash. In this study the engineering behavior, collapse potential and compressibility of the Lisan Marl were assessed by undertaking laboratory tests with both natural, distilled water and brine as the media. The results showed that the liquid limit and fine particles increased when the soil was mixed with fresh/distilled water compared with brine water. The soil can be classified as highly compressible with a low undrained shear strength. In terms of collapsibility, the soil could be classified as slightly collapsible upon inundation with distilled water and moderately collapsible when soaked in Dead Sea brine. The results are important when determining the height and nature of the dykes.   相似文献   

6.
This introductory study on mechanical properties aims to characterize silica sol and to improve knowledge of the suitability of silica sol as grout. Silica sol is a non-cementitious grout that consists of spherical particles of amorphous silica, with a diameter of 5–100 nm. For a testing period of six months, specimens of silica sol were kept at 8 °C with three relative humidities: 75%, 95% and 100%. During the test period measurements of the drying shrinkage, compressive strength, modulus of elasticity (Young’s modulus), shear strength and flexural strength were made. The results show that the strength of silica sol continues to increase for a long time and during the test period of six months the strength kept increasing. The increase of strength depends on the humidity to which silica sol is exposed but the humidity also affects the drying shrinkage. A lower humidity results in a faster increase in strength but also a larger shrinkage.  相似文献   

7.
This paper presents a numerical investigation of cantilevered glass fiber-reinforced polymer (GFRP) tubular poles subjected to lateral and axial loads. A 3D finite element analysis was conducted to establish the lateral load–deflection responses under different axial loads and the axial load–bending moment interaction curves at ultimate. The model accounts for geometric nonlinearities and the composite laminate structure. Failure modes were established based on either material failure according to the Tsai-Wu failure criterion, or stability failure. The model was validated by using experimental results. A parametric study was then carried out on poles with various angle-ply and cross-ply laminates as well as different diameter-to-thickness (D/t) and length-to-diameter (L/D) ratios. The study showed that the reduction in axial strength as (L/D) ratio increases becomes more severe as (D/t) ratio is reduced. The GFRP laminate structure has a considerable effect on axial and flexural strengths of the poles for certain (D/t) ratios. It was also shown that axial load–moment interaction curves are generally linear. Increasing the fraction of longitudinal fibers in cross-ply laminates or reducing the fiber angle with the longitudinal direction in angle-ply laminates results in a larger interaction curve. A simplified design approach for the poles has been proposed.  相似文献   

8.
This paper presents a numerical investigation of the thermal and structural results from a compartment fire test, conducted in January 2003 on the full-scale multi-storey composite building constructed at Cardington, United Kingdom, in 1994 for an original series of six tests during 1995–1996. The fire compartment's overall dimensions were 11 m×7 m with one edge at the building's perimeter, using largely unprotected steel downstand beams, and including within the compartment four steel columns protected with cementitious spray. The compartment was subjected to a natural fire of fire load 40 kg/m2 of timber, in common with the original test series, but the composite slab forming its ceiling was subjected to a uniform applied load of 3.19 kN/m2, which is higher than the original.  相似文献   

9.
论述配置于单发动机专用车辆上的机械、液压复合传动装置,可实现车辆行车作业状态下的机械、液压复合传动,以及在车辆行车状态下的机械传动,油耗明显降低。  相似文献   

10.
Recent trends in structural fire engineering research have focussed on the response of buildings with large open plan spaces to so-called travelling fires. These fires travel horizontally across the floor plate of a building and result in time and spatially varying thermal exposure and response of the structure to the fire. What has received little attention, however, is the effect that non-uniform thermal exposure has on columns. Recent tests conducted at SP demonstrated the effect of a small non-uniformity of thermal exposure, resulting in a thermal gradient of around 1 °C/mm, on a column exposed to a pool fire. The curvature resulting from a non-uniform thermal exposure where the column is pinned, or in cases where the column is partially restrained, will result in an eccentricity in the column’s loading and large second order effects.This paper describes the effect of thermal exposure varying in both the horizontal and vertical axes to columns by means of including this thermal boundary in a solution of classical Euler beam theory. The resulting solution allows for a variation in the stiffness of the rotational restraint at both ends of the column and a non-uniform temperature exposure through the column’s section and along its height. The resulting equations help to understand better the impact of the assumptions of ‘lumped capacitance’ on steel columns, suggesting a challenge to this assumption in some instances, as well as to enhance understanding of the impact of non-uniform fires on steel columns.  相似文献   

11.
Zhihua Liang 《Water research》2010,44(18):5432-5438
The growing release of nanosilver into sewage systems has increased the concerns on the potential adverse impacts of silver nanoparticles (AgNPs) in wastewater treatment plants. The inhibitory effects of nanosilver on wastewater treatment and the response of activated sludge bacteria to the shock loading of AgNPs were evaluated in a Modified Ludzack-Ettinger (MLE) activated sludge treatment system. Before shock-loading experiments, batch extant respirometric assays determined that at 1 mg/L of total Ag, nitrification inhibitions by AgNPs (average size = 1-29 nm) and Ag+ ions were 41.4% and 13.5%, respectively, indicating that nanosilver was more toxic to nitrifying bacteria in activated sludge than silver ions. After a 12-h period of nanosilver shock loading to reach a final peak silver concentration of 0.75 mg/L in the MLE system, the total silver concentration in the mixed liquor decreased exponentially. A continuous flow-through model predicted that the silver in the activated sludge system would be washed out 25 days after the shock loading. Meanwhile, a prolonged period of nitrification inhibition (>1 month, the highest degree of inhibition = 46.5%) and increase of ammonia/nitrite concentration in wastewater effluent were observed. However, nanosilver exposure did not affect the growth of heterotrophs responsible for organic matter removal. Microbial community structure analysis indicated that the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria, Nitrospira, had experienced population decrease while Nitrobacter was washed out after the shock loading.  相似文献   

12.
An experimental system consisting a longitudinally finned RT58 phase change material (PCM) in a horizontal cylinder has been conducted to evaluate the heat transfer characteristics of RT58. The investigation forms part of a wider study to investigate a suitable PCM to take advantage of off-peak electricity tariff. The system consisted of a 1.2 m long copper cylinder filled with 93 kg of RT58 with an embedded finned tube at the centre to serve as a heat transfer tube. The experimental data has been reported using hourly temperature profiles, isotherm plots, overall heat transfer coefficients and energy stored. The results show a quadratic relationship between heat transfer coefficient and the inlet HTF temperature within temperature range (62-77 °C) investigated. Increasing charge inlet heat transfer fluid temperature by 21.9% increased heat transfer coefficient by 45.3% during charging and 16.6% during discharge. The potential implication of integrating PCM storage system to an air source heat pump to meet 100% residential heating energy load for common buildings in UK has demonstrated that with an improvement in heat transfer, store size can be reduced by up to 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号