首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VL Gill  Q Wang  X Shi  J Zaia 《Analytical chemistry》2012,84(17):7539-7546
Heparan sulfate (HS) glycosaminoglycans (GAGs) regulate a host of biological functions. To better understand their biological roles, it is necessary to gain understanding about the structure of HS, which requires identification of the sulfation pattern as well as the uronic acid epimerization. In order to model HS structure, it is necessary to quantitatively profile depolymerization products. To date, liquid chromatography-mass spectrometry (LC-MS) methods for profiling heparin lyase decomposition products have been shown. These enzymes, however, destroy information about uronic acid epimerization. Deaminative cleavage using nitrous acid (HONO) is a classic method for GAG depolymerization that retains uronic acid epimerization. Several chromatographic methods have been used for analysis of deaminative cleavage products. The chromatographic methods have the disadvantage that there is no direct readout on the structures producing the observed peaks. This report demonstrates a porous graphitized carbon (PGC)-MS method for the quantification of HONO generated disaccharides to obtain information about the sulfation pattern and uronic acid epimerization. Here, we demonstrate the separation and identification of uronic acid epimers as well as geometric sulfation isomers. The results are comparable to those expected for benchmark HS and heparin samples. The data demonstrate the utility of PGC-MS for quantification of HS nitrous acid depolymerization products for structural analysis of HS and heparin.  相似文献   

2.
Saad OM  Leary JA 《Analytical chemistry》2003,75(13):2985-2995
A new method using a combination of electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MSn) was developed for the identification and quantitative analysis of eight heparan sulfate (HS)- and heparin-derived delta-disaccharides obtained by enzymatic depolymerization. The compositional analysis of nonisomeric disaccharide constituents of heparin/HS was achieved from full-scan MS1 spectra using an internal standard and a calculated response factor for each disaccharide. Diagnostic product ions from MSn spectra of isomeric disaccharides were used for the quantitative analysis of the relative amounts of each of the isomers in mixtures. The protocol was validated using several quality control samples and showed satisfactory accuracy and precision. The analysis is rapid, accurate, and uses no purification or separation steps prior to analysis by MS, thus reducing sample consumption and analysis time of traditional methods. Using this quantitative analysis procedure, percentages of disaccharide compositions for heparins from porcine and bovine intestinal mucosa and heparan sulfate from bovine kidney were determined.  相似文献   

3.
Heparin and heparan sulfate (HS) are important pharmaceutical targets because they bind a large number of proteins, including growth factors and cytokines, mediating many biological processes. Because of their biological significance and complexity, there is a need for development of rapid and sensitive analytical techniques for the characterization and compositional analysis of heparin and HS at the disaccharide level, as well as for the structure elucidation of larger glycosaminoglycan (GAG) sequences important for protein binding. In this work, we present a rapid method for analysis of disaccharide composition using reversed-phase ion-pairing ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry ((RPIP)-UPLC-MS). Heparin disaccharide standards were eluted in less than 5 min. The method was used to determine the constituents of GAGs from unfractionated heparin/HS from various bovine and porcine tissues, and the results were compared with literature values.  相似文献   

4.
Here we report results from the analyses by enzymatic digestion and reversed-phase ion-pairing liquid chromatography mass spectrometry (RPIP-LC-MS) of active pharmaceutical ingredient (API) unfractionated heparins (UFHs) from six different manufacturers and one USP standard sample. We employed a reverse phase ion-pairing chromatography method using a C(18) column and hexylamine as the ion-pairing reagent with acetonitrile gradient elution to separate disaccharides generated from the digestion of the heparins by lyase I and III (E.C. 4.2.2.7 and 4.2.2.8) before introduction into an ion-trap mass spectrometer by an electrospray ionization (ESI) interface. Extracted ion chromatograms (EICs) were used to determine the relative abundance of the disaccharides by mass spectrometry. Eight disaccharides were observed and a similar composition profile was observed from digests of 20 UFH samples. The compositional profile determined from these experiments provides a measure of the norm and range of variation in "good" heparin to which future preparations can be compared. Furthermore, the profile obtained in the RPIP-LC-MS assay is sensitive to the presence of the contaminant, oversulfated chondroitin sulfate A (OSCS), in heparin.  相似文献   

5.
In recent years, bacterial cellulose (BC) has been fabricated in tubular shape as scaffold for vascular tissue engineering. However, in order to improve the blood compatibility and regenerative ability of BC, BC nano-fibres should be cross-linked with some materials which can prevent the formation of blood clot. In this work, a novel BC-chitosan (CS)/heparin (Hep) composite was prepared. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transformed infrared spectroscopy (FTIR) were used to analyse the obtained samples. It is observed by SEM and TEM that the obtained composites remain the three-dimensional (3D) network and porous structure. The results of XRD reveal that the curve of BC-CS/Hep composite assumes the characteristic absorption peaks of BC, CS and Hep. The FTIR results also confirm the presence of CS and Hep on the surface of BC nano-fibres. In conclusion, BC-CS/Hep composites were obtained by the co-synthesis technique and the cross-linking method, respectively. Furthermore, the MC3T3-E1 cells were seeded on the obtained samples to test the cell compatibility. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide results indicated that the BC-CS/Hep composites were suitable for cell proliferation and ingrowth.  相似文献   

6.
Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).  相似文献   

7.
8.
This prospective, multicenter, proof‐of‐concept study aimed to evaluate the possibility to reduce the ordinary heparin dose and the systemic anti‐Xa activity during hemodialysis (HD) sessions using a new heparin‐grafted HD membrane. In 45 stable HD patients, the use of a heparin‐grafted membrane with the ordinary heparin dose was followed by a stepwise weekly reduction of dose. Reduction was stopped when early signs of clotting (venous pressure, quality of rinse‐back) occurred during two out of three weekly HD sessions. Heparin dose was decreased for 67% of patients resulting in the lowering of these patients' anti‐Xa activity by 50%. Dose reductions were achieved with both types of heparin (low‐molecular‐weight heparin: 64 ± 14 to 35 ± 12 IU/kg, P < 0.0001; unfractionated heparin: 82 ± 18 to 46 ± 13 IU/kg, P < 0.0001) resulting in a decrease of anti‐Xa activity at dialysis session end (low‐molecular‐weight heparin: 0.51 ± 0.25 to 0.25 ± 0.11 IU/mL, P < 0.0001; unfractionated heparin: 0.28 ± 0.23 to 0.13 ± 0.07 IU/mL, P < 0.0001). Failure to further decrease heparin dose was related to signs of clotting in blood lines (57% of sessions), in dialyzer (9%), or both (34%). Significant reduction of heparin dose and anti‐Xa activity at the end of HD sessions was possible in stable HD patients using heparin‐grafted membrane. HD patients who require low anti‐Xa activity at the end of HD sessions might benefit from a heparin‐grafted membrane to reduce bleeding risk and other heparin adverse events.  相似文献   

9.
Contamination of heparin with oversulfated chondroitin sulfate (OSCS) became a matter of grave concern in the medical field after many fatal responses to OSCS tainted heparin products occurred during the 2007-2008 period. Even though standard lab-based analytical techniques such as nuclear magnetic resonance (NMR) and strong anion-exchange high performance liquid chromatography (SAX-HPLC) have proven useful for monitoring the OSCS content in heparin products, an easy-to-use, quick, portable, and cost-efficient method is still needed for on-site monitoring during and after the heparin production. In this report, a disposable strip-type electrochemical polyion sensor is described for detection of low levels of OSCS contamination in heparin. A magnetic actuator is incorporated into this simple electrode-based microfluidic device in order to create the mixing effect necessary to achieve equilibrium potential changes of the sensor within a microfluidic channel. The planar membrane electrode detector within the sample channel is prepared with a tridodecylmethylammonium chloride (TDMAC)-doped poly(vinyl chloride) (PVC) membrane essentially equivalent to previously reported polyanion-sensitive electrodes. When the concentration of heparin applied to the single-use strip device is 57 mg/mL (in only 20 μL of sample), the same concentration recommended in the NMR analysis protocol for detecting OSCS in heparin, the detection limit is 0.005 wt % of OSCS, which is ca. 20 times lower than the reported detection limit of the NMR method.  相似文献   

10.
Unfractionated heparin remains the most commonly used anticoagulant for extracorporeal therapies worldwide due to cost, years of clinical experience showing effectiveness and safety for outpatient hemodialysis. Most centers administer unfractionated heparin as an initial bolus followed by a constant infusion, which is then stopped prior to the end of the dialysis session. Although the anticoagulant effect of heparin can be monitored at the bedside, most centers take a pragmatic stance for routine outpatient hemodialysis, and adjust bolus doses and infusion rates based on visual inspection of the dialyzer header and venous air detector chamber for clots, and stop the heparin infusion based on the time taken for needle puncture sites to stop bleeding at the end of the hemodialysis session. Heparin is negatively charged and can bind to plasma proteins, leukocytes, and plastic. As such, it is important to achieve adequate mixing of heparin with blood to optimize anticoagulation within the extracorporeal circuit, by administering an intravenous bolus a few minutes prior to connecting the patient to the circuit and ensuring thorough mixing of the heparin infusion.  相似文献   

11.
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.  相似文献   

12.
13.
Preparation and characterization of heparin-loaded polymeric microparticles   总被引:1,自引:0,他引:1  
Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-epsilon-caprolactone and poly(D,L-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 microns and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively) but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

14.
To differentiate heparin samples with varying amounts of dermatan sulfate (DS) impurities and oversulfated chondroitin sulfate (OSCS) contaminants, proton NMR spectral data for heparin sodium active pharmaceutical ingredient samples from different manufacturers were analyzed using multivariate chemometric techniques. A total of 168 samples were divided into three groups: (a) Heparin, [DS] ≤ 1.0% and [OSCS] = 0%; (b) DS, [DS] > 1.0% and [OSCS] = 0%; (c) OSCS, [OSCS] > 0% with any content of DS. The chemometric models were constructed and validated using two well-established methods: soft independent modeling of class analogy (SIMCA) and unequal class modeling (UNEQ). While SIMCA modeling was conducted using the entire set of variables extracted from the NMR spectral data, UNEQ modeling was combined with variable reduction using stepwise linear discriminant analysis to comply with the requirement that the number of samples per class exceed the number of variables in the model by at least 3-fold. Comparison of the results from these two modeling approaches revealed that UNEQ had greater sensitivity (fewer false positives) while SIMCA had greater specificity (fewer false negatives). For Heparin, DS, and OSCS, respectively, the sensitivity was 78% (56/72), 74% (37/50), and 85% (39/46) from SIMCA modeling and 88% (63/72), 90% (45/50), and 91% (42/46) from UNEQ modeling. Importantly, the specificity of both the SIMCA and UNEQ models was 100% (46/46) for Heparin with respect to OSCS; no OSCS-containing sample was misclassified as Heparin. The specificity of the SIMCA model (45/50, or 90%) was superior to that of the UNEQ model (27/50, or 54%) for Heparin with respect to DS samples. However, the overall prediction ability of the UNEQ model (85%) was notably better than that of the SIMCA model (76%) for the Heparin vs DS vs OSCS classes. The models were challenged with blends of heparin spiked with nonsulfated, partially sulfated, or fully oversulfated chondroitin sulfate A, dermatan sulfate, or heparan sulfate at the 1.0, 5.0, and 10.0 wt % levels. The results from the present study indicate that the combination of (1)H NMR spectral data and class modeling techniques (viz., SIMCA and UNEQ) represents a promising strategy for assessing the quality of commercial heparin samples with respect to impurities and contaminants. The methodologies show utility for applications beyond heparin to other complex products.  相似文献   

15.
Unfractionated heparin is an anti-inflammatory mucoactive agent, with the potential to treat the inflamed and mucus-obstructed airways in patients with cystic fibrosis. In this study, unfractionated heparin has been spray-dried to produce spherical micronized particles in the size range 1-5 microm, which is suitable for delivery by dry-powder inhalation. Spray drying parameters have been optimized using a 2(4) factorial experimental design. The feed concentration and atomization spray flow rate have the greatest effects on recovery (typically 60%) and particle size.  相似文献   

16.
Introduction: Ethanol lock solution has been mainly administered in paediatric and home parenteral nutrition patients in order to prevent catheter related blood stream infections (CRBSI). Its utility in hemodialysis (HD) patients with non‐tunneled‐uncuffed catheter (NTC) has been poorly explored. Methods: We conducted a prospective randomized study in chronic HD patients requiring a newly inserted NTC‐while awaiting for the maturation of an already established arteriovenous fistula (AVF) or arteriovenous graft (AVG) or tunneled‐cuffed catheter insertion. Patients were randomized in two groups: Group A, where the lock solution was ethanol 70% + unfractionated heparin 2000 U/mL and group B, that received only unfractionated heparin 2000 U/mL. Primary end point was CRBSIs whereas exit site infections, thrombotic and bleeding episodes were the secondary end points. Findings: One hundred three HD patients were enrolled in the study (group A, n = 52; group B, n = 51). The median number of catheter days was 32 for group A (range: 23–39) and 34 (range: 27–40) for group B with no statistically significant difference between the two groups. Group A (ethanol + heparin) demonstrated 4/52 episodes (7.69%) of CRBSI whereas Group B (heparin) 11/51 episodes (21.57%) (P = 0.04). CRBSI rates per 1000 catheter days were 2.53/1000 catheter days for group A and 6.7/1000 catheter days for group B (P = 0.04). Mean cumulative infection‐free catheter survival in the ethanol group did not differ significantly compared to the heparin group (log‐rank test = 2.99, P = 0.08). Thrombotic episodes did not differ between the two groups. Discussion: Locking of NTCs in HD patients with ethanol 70% + unfractionated heparin reduces CRBSI rates without increasing the thrombotic episodes.  相似文献   

17.
Unfractionated heparin is an anti-inflammatory mucoactive agent, with the potential to treat the inflamed and mucus-obstructed airways in patients with cystic fibrosis. In this study, unfractionated heparin has been spray-dried to produce spherical micronized particles in the size range 1–5 μm, which is suitable for delivery by dry-powder inhalation. Spray drying parameters have been optimized using a 24 factorial experimental design. The feed concentration and atomization spray flow rate have the greatest effects on recovery (typically 60%) and particle size.  相似文献   

18.
The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.  相似文献   

19.
A method for determining the sequence type of the disaccharide repeat region of cartilage samples is introduced. The samples are sequentially subjected to selective and nonselective enzymatic digestion, and the isomeric products from each step are quantified using tandem mass spectrometry. The two-step digestion/quantification protocol identifies whether the global makeup of the polymer is "alternating", "random", or "blocked" with respect to the two main components of the cartilage, 4- and 6-sulfated disaccharides. Using this procedure, the sequence type of two biologically isolated chondroitin polysaccharides was identified. The results for chondroitin sulfate A, isolated from bovine trachea, are consistent with the 4- and 6-sulfated disaccharides randomly distributed throughout the repeat region of the polysaccharide. For chondroitin sulfate C, shark cartilage, the 6-sulfated disaccharides are adjacent to each other to a larger extent than one would expect for a randomly distributed polymer, indicating that "blocks" of repeating disaccharides with the same sulfation site are present.  相似文献   

20.
Sulfamate (NHSO(3)(-)) groups are critically important structural elements of the glycosaminoglycans heparin and heparan sulfate (HS). Experimental conditions are presented for detection of the sulfamate (1)H NMR resonances in aqueous solution. NMR spectra reported for N-sulfoglucosamine (GlcNS) and the synthetic pentasaccharide drug fondaparinux demonstrate the broad utility of the sulfamate group (1)H chemical shifts to reflect differences in molecular structure. The sulfamate protons also provide an efficient route for detection of (15)N chemical shifts through proton-nitrogen correlations measured with the heteronuclear single quantum coherence (HSQC) experiment. The HSQC spectra of GlcNS, fondaparinux, and the low-molecular weight heparin enoxaparin illustrate the power of the (1)H and (15)N chemical shifts of the sulfamate NH groups for the structural characterization of heparin and HS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号