共查询到7条相似文献,搜索用时 0 毫秒
1.
Djamel Haddad Hocine Benmoussa Noureddine Bourmada Kafia Oulmi Bouziane Mahmah Maïouf Belhamel 《International Journal of Hydrogen Energy》2009
The objective of our study is to quantify the mass water transferred by various modes: diffusion, convection and migration. For the water transfer, the principal forces considered in the model are, the convection force, the osmotic force (i.e. diffusion) and the electric force (migration). The first of these forces results from a pressure gradient, the second of a concentration gradient and the third of a protons' migration from the anode to the cathode, which has an effect on the dipole of the water molecules (resistance force to the advancement). The numerical tool used to solve the equations' system is the finite element method. The results obtained numerically considering this method are concentration profiles and concentration variation with time and membrane thickness. These results illustrate the contribution of each mass transfer mode. 相似文献
2.
A mathematical model for the interfacial charge transfer within dye-sensitised solar cells (DSC) is presented for the semiconductor–dye–electrolyte interface. The model explicitly accounts for each reaction at the interface involving dye molecules, electrolyte species and adsorbed electrons associated with the conduction band surface states of the semiconductor. Additionally, the model accounts for photoelectron injection via singlet and triplet excited dye states. The governing equations can be used to describe the total current produced by the DSC under illuminated and non-illuminated conditions, at steady state. Regular perturbation methods are applied to the model equations to obtain closed form analytic approximations, resulting in approximate solutions that negate the need for numerical solution of the model system. All parameter values associated with the model are obtained from the literature and from experimental data. The presented numerical results and analytic approximations compare favourably to experimental data, capturing the interfacial characteristics of current versus voltage curves of the DSC. 相似文献
3.
In this paper, a new approach to estimate the optimal performance of an unknown proton exchange membrane fuel cell (PEMFC) has been proposed. This proposed approach combines the Taguchi method and the numerical PEMFC model. Simulation results obtained using the Taguchi method help to determine the value of control factors that represent the tested unknown PEMFC. The objective of reducing both fuel consumption and operation cost can be achieved by determining the parameters for the unknown PEMFC. In addition, the optimal operation power for the tested unknown PEMFC can also be predicted. Experimental results on the test equipment show that the proposed approach is effective in optimal performance estimation for the tested unknown PEMFC, thus demonstrating the success achieved by combining the Taguchi method and the numerical PEMFC model. 相似文献
4.
In order to control the combustion phase precisely and remarkably extend the operation range of Homogeneous Charge Compression Ignition (HCCI) engine, a method of on-board controllable phase fuel reformation in the reforming chamber is proposed in this paper. HCCI combustion is dominated by chemical kinetics, and H2, OH, H and O are the key radicals and play an important role in controlling HCCI combustion. The attempt of the proposed method is to try to change the control of chemical kinetics into a manipulation of fuel reforming system. The system includes an independent reformation chamber with an injector and a controllable valve that connects reformation chamber and the main chamber. The reforming fuel is reformed into H2-rich gas. The reformed gas enters the cylinder to change the combustion phasing at compression stroke. The model of HCCI with reforming process is built with CHEMKIN 4.1 software, and HCCI process with on-board reformation is simulated. The results show that the components of the reformed gas are influenced by initial temperature and reforming mixture concentration. The maximum fraction of H2 may be obtained by optimizing the trap timing and reforming mixture concentration (optimal value: ΦT = 31 °CA, λ3 = 0.4). The optimized reformed gas does have the ability to change the combustion phasing of HCCI engine. With the help of the on-board controllable phase fuel reformation system, HCCI combustion process can be precisely controlled, and the HCCI engine is allowed to operate under lower intake temperature and higher speed condition, and to keep high IMEP and indicated thermal efficiency. 相似文献
5.
The study first applies a three-dimensional model to analyze the cell performance of PEMFCs using rectangular cylinders with various numbers transversely inserted at the axis in the channel, and finds the higher performance with reasonable pressure drop. The Taguchi optimization methodology is then combined with the three-dimensional PEMFC model to determine the optimal combination of five primary operating parameters for the best arrangement of the rectangular cylinders in the channel. The results indicate that the optimal combination factor is a cell temperature of 313 K, an anode humidification temperature of 333 K, a cathode humidification temperature of 333 K, a hydrogen stoichiometric flow ratio of 1.9, and an oxygen stoichiometric flow ratio of 2.7. This study also examines the pressure drop for the channels with rectangular cylinders transversely inserted. Using experimental data verifies the numerical results of the flow field design with rectangular cylinders. 相似文献
6.
María Victoria GilDaniel Blanco María Teresa CarballoLuis Fernando Calvo 《Biomass & bioenergy》2011,35(1):243-252
Analysis of aboveground biomass and carbon stocks (as equivalent CO2) was performed in the Castilla y León region, Spain. Data from the second and third Spanish Forest Inventories (1996 and 2006) were used. Total aboveground biomass was calculated using allometric biomass equations and biomass expansion factors (BEF), the first method giving higher values. Forests of Castilla y León stored 77,051,308 Mg of biomass, with a mean of 8.18 Mg ha−1, in 1996 and 135,531,737 Mg of biomass, with a mean of 14.4 Mg ha−1, in 2006. The total equivalent CO2 in this region’s forests increased 9,608,824 Mg year−1 between 1996 and 2006. In relation to the Kyoto Protocol, the Castilla y León forests have sequestered 3 million tons of CO2 per year, which represents 6.4% of the total regional emission of CO2. A Geographic Information System (GIS) based method was also used to assess the geographic distribution of residual forest biomass for bio-energy in the region. The forest statistics data on area of each species were used. The fraction of vegetation cover, land slope and protected areas were also considered. The residual forest biomass in Castilla y León was 1,464,991 Mg year−1, or 1.90% of the total aboveground biomass in 1996. The residual forest biomass was concentrated in specific zones of the Castilla y León region, suitable for the location of industries that utilize biomass as energy source. The energy potential of the residual forest biomass in the Castilla y León region is 7350 million MJ per year. 相似文献
7.
Chao Jin Mingfa Yao Haifeng Liu Chia-fon F. Lee Jing Ji 《Renewable & Sustainable Energy Reviews》2011,15(8):4080-4106
Butanol is a very competitive renewable biofuel for use in internal combustion engines given its many advantages. In this review, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel. The comparison of fuel properties indicates that n-butanol has the potential to overcome the drawbacks brought by low-carbon alcohols or biodiesel. Then, the development of butanol production is reviewed and various methods for increasing fermentative butanol production are introduced in detailed, i.e. metabolic engineering of the Clostridia, advanced fermentation technique. The most costive part of the fermentation is the substrate, so methods involved in renewed substrates are also mentioned. Next, the applications of butanol as a biofuel are summarized from three aspects: (1) fundamental combustion experiments in some well-defined burning reactors; (2) a substitute for gasoline in spark ignition engine; (3) a substitute for diesel fuel in compression ignition engine. These studies demonstrate that butanol, as a potential second generation biofuel, is a better alternative for the gasoline or diesel fuel, from the viewpoints of combustion characteristics, engine performance, and exhaust emissions. However, butanol has not been intensively studied when compared to ethanol or biodiesel, for which considerable numbers of reports are available. Finally, some challenges and future research directions are outlined in the last section of this review. 相似文献