首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the effect of organic or inorganic materials on membrane fouling in advanced drinking water treatment by hybrid module packed with granular activated carbon (GAC) outside a tubular ceramic microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in the natural water source, synthetic water was prepared with humic acid and kaolin. Concentrations of kaolin or humic acid were changed to see effects of inorganic or organic matter. And periodic water-back-flushing using permeate water was performed during 10 sec per filtration of 10 min. As a result, both the resistance of membrane fouling (R f ) and permeate flux (J) were influenced higher by concentration of humic acid rather than kaolin. It was proved that NOM like humic acid could be a more important factor on membrane fouling in drinking water treatment than fine inorganic particles. Treatment efficiencies of turbidity and UV254 absorbance were very high above 97.4% and 92.0%, respectively. This article is dedicated to Professor Chang Kyun Choi for celebrating his retirement from the School of Chemical and Biological Engineering, Seoul National University.  相似文献   

2.
Shaobin Wang  Qing Ma  Z.H. Zhu 《Fuel》2008,87(15-16):3469-3473
Several fly ash samples were collected and their physico-chemical properties were characterised using N2 adsorption, XRD, SEM, and pH titration. These fly ash samples were applied as low-cost adsorbents for removal of methylene blue and humic acid from aqueous solution. It is found that the adsorption has a close relationship with surface area and pore volume. Higher surface area and pore volume of fly ash will result in higher adsorption of methylene blue (MB) and humic acid (HA). The adsorption of MB and HA on various fly ash samples can reach 7 and 10 mg/g, respectively. Solution pH will also influence humic acid adsorption on fly ash and higher pH will result in lower adsorption. Ionic strength will also influence HA adsorption.  相似文献   

3.
In this study, polysulfone (PSF) hollow fiber membranes with enhanced performance for humic acid removal were prepared from a dope solution containing PSF/DMAc/PVP/TiO2. The main reason for adding titanium oxide during dope solution preparation was to enhance the antifouling properties of membranes prepared. In the spinning process, air gap distance was varied in order to produce different properties of the hollow fiber membranes. Characterizations were conducted to determine membrane properties such as pure water flux, molecular weight cut off (MWCO), humic acid (HA) rejection and resistance to fouling tendency. The results indicated that the pure water flux and MWCO of membranes increased with an increase in air gap distance while HA retention decreased significantly with increasing air gap. Due to this, it is found that the PSF/TiO2 membrane spun at zero air gap was the best amongst the membranes produced and demonstrated > 90% HA rejection. Analytical results from FESEM and AFM also provided supporting evidence to the experimental results obtained. Based on the anti-fouling performance investigation, it was found that membranes with the addition of TiO2 were excellent in mitigating fouling particularly in reducing the fouling resistances due to concentration polarization, cake layer formation and absorption.  相似文献   

4.
《Ceramics International》2023,49(2):1855-1864
Membrane fouling and separation materials with low cost and high efficiency are challenges for membrane separation technology in wastewater treatment. Superhydrophilic and underwater superoleophobic membranes show broad application prospects in oily wastewater treatment because of their high permeability, selectivity, and antifouling performance; however, they are generally ineffective for organic pollutant molecules. In this study, a novel graphene oxide (GO)/geopolymer composite membrane with superhydrophilic and underwater superoleophobic characteristics was prepared by dipping a mixed slurry of GO and fly ash-based geopolymer onto a stainless steel mesh via a facile self-assembly process. The results show that GO could adjust the hydrophilicity and water flux of composite membranes. The composite membrane containing 0.4 wt% GO (4GO/GCM) had the best hydrophilic, water flux of 1363 kg/(m2·h), and high separation efficiencies (≥98.2%) for oil-water mixtures and oil-in-water emulsions under gravity-driven. In addition, the 4GO/GCM sample exhibited excellent stability under harsh conditions, including hot water and strong acid, alkali, and salt solutions. Importantly, the sample derived from fly ash exhibited unique photocatalytic degradation performance for organic dye molecules under simulated solar-light irradiation. Thus, it is believed to this strategy has substantial potential for high-value utilization of fly ash and the sustainable treatment of oily and dye wastewater.  相似文献   

5.
Polyethersulfone (PES) ultrafiltration (UF) membranes with and without surface‐modifying macromolecules (SMMs) were prepared and characterized in terms of the mean pore size and pore‐size distribution, surface porosity, and pore density. The results demonstrated that both the mean pore size and the molecular weight cutoff (MWCO) of the SMM‐modified membranes are lower than those of the corresponding unmodified ones. Membrane fouling tests with humic acid as the foulant indicated that the permeate flux reduction of the SMM‐modified membranes was much less than that of the unmodified ones. Therefore, fouling was more severe for the unmodified membranes. Moreover, the dry weight of the humic acid deposited on the membrane surface was considerably higher for the unmodified membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3132–3138, 2003  相似文献   

6.
J. Lowe  Md.M. Hossain 《Desalination》2008,218(1-3):343-354
Humic acids are primarily a result of the microbiological degradation of surrounding vegetation and animal decay and enter surface waters through rain water run-off from the surrounding land. This often gives rise to large seasonal variations, high concentrations in the wet season and lower concentrations in the dry season. Alone humic acid is just a colour problem but when present in conventional treatment processes like chlorination, carcinogenic by-products like trihalomethane and haloacetic acid are formed. This, in addition to the demand for clean potable drinking water, has sparked extensive research into alternative processes for the production of drinking water from various natural/industrial sources. One of the major areas of focus in these studies is the use of membranes in microfiltration, ultrafiltration and nanofiltration. In this report the humic acid removal efficiency of ultrafiltration membranes with 3 kDa, 5 kDa and 10 kDa MWCO is examined. The membranes were made of regenerated cellulose and were in the form of cassette providing a 0.1 m2 surface area. At first distilled and deionised water, known as milliQ water, was used as the background feed solution to which humic acid powder was added. It was found that all three membranes removed humic acid with an efficiency of approx. 90% and were capable of reducing initial concentrations of 15mg/L to below the New Zealand regulatory limit of 1.17 mg/L. The permeate flux at a transmembrane pressure of 2.1 bar was approx. 20 l/m2/h (LMH) and 40 LMH, respectively through the membranes with MWCO 3 kDa and 5 kDa. These membranes experienced significant surface fouling resulting in retentate flow rates as low as 11 litres per hour after just four runs compared to the recommended 60–90 l/h. Cleaning with 0.1 M NaOH slightly improved the retentate flow rate, but well below those obtained with fresh membranes. The 10 kDa membrane provided high retentate flow rates which evidently minimised fouling by providing a good sweeping action across the membrane surface while maintaining humic acid removal below the regulatory 1.17 mg/L level. The permeate flux through this membrane was initially high (140–180 LMH) and reduced to approx. 100 LMH after 10–12 min of operation. Increasing the initial humic acid feed concentration from 10 mg/L to 50 mg/L did not significantly decrease humic acid removal efficiency although the retentate flow rate was lower at higher concentrations. Finally the tap water was tested as the background solution and treated for the removal of humic acid. The presence of ions and other impurities in the tap water had little effect on humic acid removal. However, the permeate flux through 10 kDa membrane decreased from 100 LMH for milliQ water to 60 LMH for tap water after 20 min of operation.  相似文献   

7.
利用湿式相转化方法制备TiO2/聚苯砜(polyphenylsulfone,PPSU)/聚醚亚硫胺(polyetherimide,PEI)催化膜应用于水中腐植酸(humic acid,HAs)的去除及积垢机理研究。结果表明,随着亲水性PEI比例增加,光催化膜的纯水通量和HAs的过滤通量越大,去除效率越低;且随着光照时间的延长去除效率越趋于稳定,且有回复的现象。在0.2MPa操作压力下,制备的TiO2/PPSU/PEI (1%/50%/50%)膜具有最佳的可逆阻抗力比例(Rc/Rt=48.24%);其渗透通量、HAs去除效率及反洗后通量分别为34.0L/(m2·h)、63.2%及22.5L/(m2·h),具有较佳的通量及HAs去除效率。  相似文献   

8.
Polyethersulfone (PES) was modified by blending it with polyaniline (PANI) nanoparticles to improve the membrane performance. Three types of membranes: PES (controlled sample), PES-PANI self-synthesised, and PES-PANI (commercial), were evaluated by direct interaction with BSA, humic acid, silica nanoparticles, Escherichia coli and Bacillus bacteria. The surface hydrophilicity of the modified PES membranes was enhanced by the addition of PANI nanoparticles and showed improved fouling resistance and a high flux recovery ratio as well as improvement in BSA and humic acid rejection even with higher pore sizes. The modified membrane also showed less attack from the bacteria, demonstrating improved biofouling activity.  相似文献   

9.
Two unburned carbons (UCs) were separated from coal fly ash and their physicochemical properties were characterised using N2 adsorption, XRD, SEM, XPS, FT-IR and potentiometric mass titration. Chemical treatments using HNO3 and KOH were also conducted on one of the unburned carbons. The adsorption of humic acid from aqueous solution was performed on these untreated and chemically treated UCs. It was found that the UCs showed different porous structure and surface chemical properties, which influenced their adsorption behaviour. UCs exhibited high adsorption capacity for humic acid. After chemical treatment, the textural structure and surface functional groups of the unburned carbon were changed and the adsorption behaviour showed significant difference. Acid treatment did not change the surface area but reduced the functional groups while basic treatment significantly enhanced the surface area in microporous section but still reduced the surface functional groups. Particle size and pH solution will also influence the adsorption capacity. The adsorption will increase with decreasing particle size for humic acid. Higher pH solution will reduce humic acid adsorption on unburned carbon. Ionic strength will also affect humic acid adsorption showing positive effect on adsorption capacity.  相似文献   

10.
Ceramic membranes specially zeolite membranes are usually used for dewatering of organics by pervaporation. In the previous work, it was observed that kaolin calcined at 1050 °C has a separation factor 19.25 while kaolin calcined at 800 °C does not show any separation activity and its separation factor is equal to 1. In this research, effect of calcination temperature on flux and separation factor of kaolin modules that prepared by electrophoresis as a support of zeolite membranes was investigated. By increasing the kaolin calcination temperature, the flux of membrane increases due to many pores created in the module. This was confirmed by SEM micrographs. The highest flux was about 18 kg/m2 h for modules calcined at 1200 °C with ethanol 95%. Their separation factors were almost the same for each module. It was very low but comparable with some porous and non-porous polymeric membranes. Increasing calcination temperature causes module strength to enhance. It was found that the module calcined at 1200 °C may be suitable as a support for zeolite A membranes.  相似文献   

11.
水中天然有机物对超滤膜污染研究   总被引:4,自引:1,他引:3  
对超滤膜受天然有机物污染的特性进行研究,同时考查无机矿物质成分对污染的协同影响。采用PES平板膜进行膜污染试验,模拟地表水研究腐殖酸以及钙离子的影响并进行了化学清洗试验。研究结果表明,在pH值为7.8,腐殖酸质量浓度为15 mg/L,操作压力0.1 MPa下,当钙离子浓度为4 mmol/L时,膜污染最为严重,10 min后膜通量降到起始膜通量的60%以下。先用0.1 mol/L的NaOH,再用0.5%的盐酸清洗后,膜通量可恢复至起始膜通量的98%。  相似文献   

12.
利用N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、磷酸三乙酯(TEP)和二甲基亚砜(DMSO)4种溶剂制备PVDF微孔膜,考察溶剂对成膜性能的影响,除了测试膜结构、孔隙率、清水通量等常规指标外,增加膜污染速率指标,研究4种溶剂成膜在实际膜-生物反应器(MBR)内的运行情况,得到4种溶剂成膜结构不同,具有贯穿性指状孔的DMSO溶剂成膜具有最高的孔隙率,高清水通量,并在MBR内表现出最低的污染速率,最适于制备水处理用的PVDF膜;具有海绵状孔的TEP溶剂成膜具有最高的清水通量,高的孔隙率,在MBR内污染速率较低;DMF、DMAc溶剂成膜结构类似,具有不贯穿的指状孔,孔隙率及清水通量均较低,膜污染速率高,不适于水处理MBR用膜。  相似文献   

13.
《Ceramics International》2023,49(10):15655-15664
Recycling fly ash for ceramic membrane fabrication not only reduces solid waste discharge, but also decreases the membrane cost. Now, fly ash is becoming a promising substitute material for ceramic membrane preparation. A significant difference between fly ashes from different plants is the particle size, which makes performances of fly ash membranes unpredictable. The novelty of this work is to clarify the effects of the particle size of fly ash on ceramic membranes, thereby giving practical suggestions on fly ash selection for ceramic membrane preparation. Ceramic membranes were fabricated with different sizes of fly ashes. Effects of particle size on porosity, pore size, microstructure, mechanical strength and gas permeability of the membrane were investigated. Results indicate that a broader particle size distribution of fly ash leads to a denser structure of membrane with a lower porosity. Pore size and gas permeability of membrane increase while bending strength decreases with the particle size increasing. Bending strength of a fly ash membrane is largely determined by large particles in the fly ash because the large particles lead to cracks in the membrane. This work provides experimental bases for developing high performance ceramic membranes from fly ash.  相似文献   

14.
In this work, the redox‐initiated graft polymerization of acrylic acid (AA) onto the surface of polyamide thin film composite membranes has been carried out to enhance membrane separation and antifouling properties. The membrane surface characteristics were determined through the attenuated total reflection Fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy, and water contact angles. The membrane separation performance was evaluated through membrane flux and rejection of some organic compounds such as reactive red dye (RR261), humic acid, and bovine serum albumin in aqueous feed solutions. The experimental results indicated that the membrane surfaces became more hydrophilic and smoother after grafting of AA. The modified membranes have a better separation performance with a significant enhancement of flux at a great retention. The fouling resistance of the modified membranes is also clearly improved with the higher maintained flux ratio and the lower irreversible fouling factor compared to the unmodified one. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45110.  相似文献   

15.
Two types of bisphenol monomers, Bisphenol A (BPA) and Tetramethyl Bisphenol A (TMBPA), with different concentrations of bisphenol aqueous solution (0.5% to 2.%w/v) and various interfacial polymerisation times (10 s, 30 s and 60 s) in the fixed 0.15%w/v organic solution of trimesoyl chloride (TMC)-hexane were studied. Irreversible fouling of both unmodified polyethersulfone NFPES10 and modified polyester thin-film composite polyethersulfone membranes were studied using humic acid model solutions at two different pH values, pH 7 and pH 3. It was observed that polyester thin-film composite membranes prepared by BPA exhibited fewer tendencies for irreversible fouling by humic acid molecules at neutral environment compared to unmodified NFPES10 and TMBPA-polyester series. This is most probably due to high electrostatic repulsion force between negatively charged of BPA-polyester layer and highly negative charged of humic acid at pH7. However, some modified membranes with rougher surfaces were severely fouled by humic acid molecules at acidic environment, pH 3. Under this acidic environment, carboxylic acid groups of humic acid lost their charge and the macromolecules of humic acid have smaller macromolecular configuration due to the increased hydrophobicity and reduced inter-chain electrostatic repulsion. Thus the molecules of humic acid may be preferentially accumulated at the valleys of the rougher membrane surface blocking them and resulting in a more severe fouling. In addition, the modification also affected membrane pore size and pore size distribution as shown by AFM images. It was also observed that the smaller pore size generated after modification does not have significant effect on humic acid removal due to the larger size of humic acid molecules. All the modified membranes posses smaller pore size than the unmodified NFPES10 (1.47 nm) in the range of 0.8–1.34 nm.  相似文献   

16.
周婕  文晨  吴佳朋  肖长发 《化工学报》2015,66(1):471-477
将不同量Ag3PO4均匀地分散在聚偏氟乙烯(PVDF)铸膜液中, 利用相转化法制备了改性PVDF膜, 通过扫描电镜(SEM)、接触角测定、过滤实验和污染性测试等研究了其微结构、分离性和耐污染性等, 并考察了膜污染后的清洗效果。结果表明, 添加Ag3PO4 的PVDF膜具有不同的微结构与性能, 当添加1% 的Ag3PO4时, 膜皮层变薄、微孔数增多, 并呈现出最优化的水通量、亲水性、力学性、抗污染能力和截留率等。采用太阳光-水清洗能使改性膜的通量恢复率达到85%以上。  相似文献   

17.
For enhanced antifouling surface properties, the alumina membranes were modified through a simple silanization process. Three organosilanes presenting neutral, positive, and negative charges were allowed to graft onto alumina membranes. A small decrease in the pore size and the successful chemical binding of organosilanes were confirmed, respectively. The membrane filtration test using humic acid (HA) was conducted to evaluate the effect of surface charges on fouling resistance. The neutral and negatively charged membranes achieved remarkable flux behaviour due to no charge interaction and electrostatic repulsion force, respectively. Especially, the negatively charged membranes presented the lowest flux decline, the highest flux recovery, and the lowest membrane fouling.  相似文献   

18.
Polysulfone membranes were prepared via phase inversion technique by using polyethylene glycol with molecular weights of 400, 1500 and 6000 Da as pore forming agent in dope formulation. The performance of membrane was characterized using humic acid and water sample taken from Sembrong River, Johor, Malaysia was used as natural organic matter sources. Membrane properties were also characterized in terms of mean pore radius, pure water flux, humic acid rejection and fouling resistance. The results indicated that the pure water flux and mean pore radius of membranes increased with the increase of PEG content. Fourier transform infrared spectroscopy results revealed the presence of hydrophilic component in PSf/PEG blend with the significant appearance of O–H peak at 3418.78 cm− 1. Scanning electron microscopy analysis revealed the presence of finger-like structure for all membranes and the structure intensified as PEG content was increased. The results obtained from the fouling study indicated that the membrane with the lowest PEG content and molecular weight has an excellent performance in mitigating fouling.  相似文献   

19.
This study presents findings from experiments on the preparation and characterization of locally available fly ash, quicklime and the CaO/fly ash sorbent, synthesized using the atmospheric hydration process. The CaO was obtained from calcination of limestone in a laboratory kiln at a temperature of 900°C. The sorbents were prepared under different hydration conditions: CaO/fly ash weight ratio (1°1 to 1°3), hydration temperature (55°C–75°C) and hydration period (4–8 h). Results show that the specific surface area of CaO/ fly ash sorbents (8.8–23.6 m2/g) was higher than that of the CaO (4.78 m2/g) at all preparation conditions. The SEM micrographs show that the prepared sorbent had a more porous structure than either the fly ash or the CaO. The X-ray diffraction (XRD) analysis shows the presence of complex compounds containing calcium silicate hydrate in the synthesized sorbents. This contributed to the high BET specific surface area. The Brunauer-Emmett-Teller (BET) specific surface area was found to decrease with increase in the amount of fly ash with the ratio of 1:1 (CaO/Fly ash) giving the highest value. It was also found that an increase in the hydration time resulted in an increased BET specific surface area, although there was only a slight effect on the same by an increase in temperature.  相似文献   

20.
研究了电场对超滤膜污染和去除性能的影响。结果表明,原水中的腐植酸在电场中发生电泳迁移,减少了向膜表面的移动,同时发生凝聚现象,沉积在膜表面形成疏松的滤饼层,有效的减缓了膜污染。经过与普通超滤膜过滤的平行试验比较得出,附加电场后对羟苯甲酮(BP-3)的去除率提高了70%~100%。同时发现,吸附是大孔径低压膜去除小分子BP-3的主要作用,水中腐植酸的存在对超滤去除BP-3有一定的促进作用。通过稀HCl、NaOH溶液浸泡和水力冲洗,可有效消除膜污染,使得膜过滤通量得到恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号